Чтобы ответить на вопрос задачи, нужно знать длины сторон основания призмы и её высоту. Объём призмы измеряют произведением её высоты на площадь основания. V=S•H⇒ Н=V:S S прямоуг. тр-ка =a•b:2, где a и b- катеты. Т.к. острые углы основания =45°, то этот треугольник - равнобедренный, второй катет равен 6 см, а гипотенуза с=√(а²+а²)=√72=6√2 S=6•6:2=18 (см²)⇒ Н==108:18=6 (см) Площадь полной поверхности призмы - сумма площадей двух оснований и площади боковой поверхности. Площадь боковой поверхности - сумма площадей боковых граней призмы. Их можно найти по отдельности или умножив высоту на периметр основания: P=(6+6+6√2)=6(2+√2) S(бок)=H*P=6•6•(2+√2)=36•(2+√2) S (полн)=2•18+36•(2+√2)=36•(3+√2)
В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.
В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.
Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.
Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.
Объём призмы измеряют произведением её высоты на площадь основания.
V=S•H⇒
Н=V:S
S прямоуг. тр-ка =a•b:2, где a и b- катеты.
Т.к. острые углы основания =45°, то этот треугольник - равнобедренный, второй катет равен 6 см, а гипотенуза
с=√(а²+а²)=√72=6√2
S=6•6:2=18 (см²)⇒
Н==108:18=6 (см)
Площадь полной поверхности призмы - сумма площадей двух оснований и площади боковой поверхности.
Площадь боковой поверхности - сумма площадей боковых граней призмы.
Их можно найти по отдельности или умножив высоту на периметр основания:
P=(6+6+6√2)=6(2+√2)
S(бок)=H*P=6•6•(2+√2)=36•(2+√2)
S (полн)=2•18+36•(2+√2)=36•(3+√2)
В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.
В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.
Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.
Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.
Пошаговое объяснение: