Данную задачу следует решать через х (икс). Для начала вспомним правила нахождения части от целого: чтобы найти часть от целого, нужно дробь, соответствующую этой части, умножить на целое. А теперь запишем решение: 1. Пусть х=кол-ву всех вещей, тогда (по правилу, указанному выше) кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). *Следует учесть, что икс (х) относится ко всей дроби, а не только к знаменателю*. Из данных рассуждений составим уравнение: х - 2/15 х - 8/15 х=15 Пояснение: из общего кол-во вещей вычитаем кол-во тетрадей и книг, соответственно, остаются только альбомы, чье кол-во нам известно из условия - 15 штук. Решаем уравнение: Перед икс всегда стоит 1, применительно к этому уравнению, 1 можно представить как 15/15 (15/15=1). Запишем левую часть уравнения на одной дробной черте, а правую просто перепишем: *не забываем про х* 15-2-8 / 15 х =15 Выполним вычитание в числителе дроби, переписав остальное, и получим: *не забываем про х* 5/15 х =15 Чтобы найти х, нужно 15 разделить на 5/15. По правилу деления дробей, 15 умножаем на 15, и полученное выражение делим на пять. В итоге получается 45. Следовательно, х=45. Помним, что х - общее кол-во вещей. Теперь пролистаем чуть выше и найдем выражения: кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). Получаем, 2/15 * 45=6 (кол-во тетрадей); 8/15 * 45=24 (кол-во книг). ответ: всего - 45 вещей; тетрадей - 6 штук; книг - 24 штуки
а) Да, например, первый набрал второй 70, третий – 10. Средний , не сдавших тест, первоначально был (70+10)/2 = 40, а после добавления по 5 очков каждому участнику стало 105, 75 и 15, тогда средний , не сдавших тест, составил 15, так как 75 достаточно для сдачи теста.
б) В примере предыдущего пункта средний участников теста, сдавших тест, сначала был а после добавления стал (105+75)/2 =
в) Судя по условию, здесь немного другое условие. Ученик считается сдавшим тест, если он набрал
Пусть из N участников сдали тест a участников, после добавления стало b участников, сдавших тест. Заметим, что средний после добавления составил (90N + 5N)/N = 95.
Таким образом, N кратно 15, потому что делится на 3 и на 5.
Покажем, что минимальное N = 15. Пусть изначально 5 участников набрали по 1 участник — и 9 участников по
Тогда средний был (5*74+80+9*100)/15 = 1350/15 = 90, средний бал сдавших тест, был 100, а средний не сдавших тест, был (5*74+80)/6 = 450/6 = 75.
После добавления стало: 5 участников по 1 участник — и 9 участников по
Теперь средний участников всех участников стал (5*79+85+9*105)/15 = 1425/15 = 95, средний сдавших тест, стал равен (85+9*105)/15 = 1030/10 = 103, средний не сдавших тест, стал равен 79.
Для начала вспомним правила нахождения части от целого: чтобы найти часть от целого, нужно дробь, соответствующую этой части, умножить на целое.
А теперь запишем решение:
1. Пусть х=кол-ву всех вещей, тогда (по правилу, указанному выше) кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). *Следует учесть, что икс (х) относится ко всей дроби, а не только к знаменателю*.
Из данных рассуждений составим уравнение:
х - 2/15 х - 8/15 х=15
Пояснение: из общего кол-во вещей вычитаем кол-во тетрадей и книг, соответственно, остаются только альбомы, чье кол-во нам известно из условия - 15 штук.
Решаем уравнение:
Перед икс всегда стоит 1, применительно к этому уравнению, 1 можно представить как 15/15 (15/15=1).
Запишем левую часть уравнения на одной дробной черте, а правую просто перепишем: *не забываем про х*
15-2-8 / 15 х =15
Выполним вычитание в числителе дроби, переписав остальное, и получим: *не забываем про х*
5/15 х =15
Чтобы найти х, нужно 15 разделить на 5/15.
По правилу деления дробей, 15 умножаем на 15, и полученное выражение делим на пять. В итоге получается 45.
Следовательно, х=45.
Помним, что х - общее кол-во вещей. Теперь пролистаем чуть выше и найдем выражения:
кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х).
Получаем, 2/15 * 45=6 (кол-во тетрадей); 8/15 * 45=24 (кол-во книг).
ответ: всего - 45 вещей; тетрадей - 6 штук; книг - 24 штуки
а) Да, например, первый набрал второй 70, третий – 10. Средний , не сдавших тест, первоначально был (70+10)/2 = 40, а после добавления по 5 очков каждому участнику стало 105, 75 и 15, тогда средний , не сдавших тест, составил 15, так как 75 достаточно для сдачи теста.
б) В примере предыдущего пункта средний участников теста, сдавших тест, сначала был а после добавления стал (105+75)/2 =
в) Судя по условию, здесь немного другое условие. Ученик считается сдавшим тест, если он набрал
Пусть из N участников сдали тест a участников, после добавления стало b участников, сдавших тест. Заметим, что средний после добавления составил (90N + 5N)/N = 95.
Имеем два уравнения:
{ 90N = 75(N - a) + 100a = 75N - 75a + 100a = 75N + 25a
{ 95N = 79(N - b) + 103b = 79N - 79b + 103b = 79N + 24b
откуда
{ 15N = 25a, то есть 3N = 5a
{ 16N = 24b, то есть 2N = 3b
Таким образом, N кратно 15, потому что делится на 3 и на 5.
Покажем, что минимальное N = 15. Пусть изначально 5 участников набрали по 1 участник — и 9 участников по
Тогда средний был (5*74+80+9*100)/15 = 1350/15 = 90, средний бал сдавших тест, был 100, а средний не сдавших тест, был (5*74+80)/6 = 450/6 = 75.
После добавления стало: 5 участников по 1 участник — и 9 участников по
Теперь средний участников всех участников стал (5*79+85+9*105)/15 = 1425/15 = 95, средний сдавших тест, стал равен (85+9*105)/15 = 1030/10 = 103, средний не сдавших тест, стал равен 79.
Таким образом, все условия выполнены.