Используя данные таблицы, ответьте на во В таблице представлена площадь кремля в некоторых городах России: Площадь какого кремля в 2,5 раза больше площади Тульского кремля? Казанского кремля Московского Кремля Псковского кремля Нижегородского кремля
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.
Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все
Пошаговое объяснение:
мВсе Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все
ответ:0,94.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.
Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все
Пошаговое объяснение:
мВсе Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все Все