Куля доторкаеця до всіх сторін правильного трикутника, медіана якого дорівнюе 12 см. Відстань від центра кулі до площини трикутника становить 4√3 см. Знайдіть площу поверхні кулі.
решение.
S=4πR², R=?
1. сечение шара плоскостью - круг. в круг вписан правильный треугольник с медианой 12 см. медианы, биссектрисы, высоты правильного треугольника в точке пересечения делятся в отношении 2:1 ,считая от вершины. точка пересечения медиан - центр описанной около треугольника окружности, => r=12:3. r=4 см, r - радиус описанной окружности
2. рассмотрим прямоугольный треугольник:
катет r =4 см - радиус секущей плоскости
катет h =4√3 см - расстояние от центра шара до секущей плоскости
гипотенуза R - радиус шара, найти по теореме Пифагора
Значит число а можно записать как
а=9к+5
А теперь воспользуемся свойством делимости:
"Если и уменьшаемое, и вычитаемое делятся на некоторое число, то и разность делится на это число"
запишем нашу разность
заметим, что число b тоже можно разделить на 9 с остатком
значит запишем его как
b=9n+x
и теперь наша разность будет выглядеть так
чтобы это равенство выполнялось x=5
И тогда число b должно делиться на 9 с остатком 5
********************************
приведем пример:
50:9= 5*9+5
41:9=4*9+5
50-41=9 и оно кратно 9
*************
221:9=24*9+5
140:9=15*5+5
221-140=81
и оно кратно 9
S=256 π см
Пошаговое объяснение:
Куля доторкаеця до всіх сторін правильного трикутника, медіана якого дорівнюе 12 см. Відстань від центра кулі до площини трикутника становить 4√3 см. Знайдіть площу поверхні кулі.
решение.
S=4πR², R=?
1. сечение шара плоскостью - круг. в круг вписан правильный треугольник с медианой 12 см. медианы, биссектрисы, высоты правильного треугольника в точке пересечения делятся в отношении 2:1 ,считая от вершины. точка пересечения медиан - центр описанной около треугольника окружности, => r=12:3. r=4 см, r - радиус описанной окружности
2. рассмотрим прямоугольный треугольник:
катет r =4 см - радиус секущей плоскости
катет h =4√3 см - расстояние от центра шара до секущей плоскости
гипотенуза R - радиус шара, найти по теореме Пифагора
R²=r²+h², R²=4²+(4√3)², R²=64
3. S=4*π*64, S=256 π