Из одного гаража одновременно в противоположных направлениях выехали автомобиль и автобус. Скорость автомобиля равна 85 км/ч, скорость автобуса — 66 км/ч. Определи расстояние между автомобилем и автобусом через 3 часа.
При выяснении вопроса о применимости векторного метода к решению той или иной задачи, необходимо установить возможность выражения всех данных соотношений между известными и искомыми величинами на языке векторов. Если это можно сделать без больших затруднений, то есть смысл при решении такой задачи использовать векторы.
Решение геометрических задач с векторов протекает успешнее, если вы будете придерживаться общих правил поиска решения. Полезно использовать девять таких правил:
1. Начиная решать задачу, посмотрите, что дано и что требуется доказать; отделите условие задачи от ее заключения; запишите условие и заключение задачи через общепринятые обозначения.
2. Выясните все (по возможности) соотношения, из которых следует заключение задачи; запишите их в векторной форме.
3. Сопоставьте каждое из рассматриваемых соотношений с тем, что дано, и с рисунком и посмотрите, какое из них лучше выбрать для доказательства.
4. Из того, что дано, получите следствия, которые связаны (или могут быть связаны) с выбранным вами соотношением.
5. Выделяя на рисунке векторы, входящие в выбранное вами соотношение, постоянно задавайте себе вопрос: «Через какие векторы можно их выразить? » Для ответа на поставленный вопрос рассматривайте эти векторы во всех целесообразных (обнадеживающих) соотношениях с другими.
6. Если для выражения вектора через другие нужно сделать дополнительные построения на рисунке, сделайте их так, чтобы это выражение было наиболее простым.
7. Постоянно помните, что дано в условии задачи, и в случае затруднений проверьте, не упустили ли вы что-либо из условия.
8. Так как затруднения могут быть связаны также с тем, что вы не применили какую-либо задачу или теорему, то в случае затруднения постарайтесь мысленно перебрать известные вам теоремы и решенные задачи и подумать, нельзя ли воспользоваться какой-нибудь из них.
9. Если выбранное вами соотношение (по правилу 2) не удалось доказать, применив все правила 4-8, то выберите другое и снова выполняйте правила 4-8 уже относительно него.
Пошаговое объяснение:
I. Для овладения умением переходить от геометрического языка к векторному и обратно необходимо знать, как то или иное векторное соотношение выражается на геометрическом языке. Например:
а) Равенство = k (k –некоторое число) , означает, что прямые АВ и СД параллельны.
б) Равенства = m/n и = n/(m+n) + m/(m+n) , (m,n –некоторые числа, Q –произвольная точка плоскости) означают, что точка С делит некоторый отрезок АВ в отношении m к n, т. е. AC : CB = m : n. При этом точка Q может быть выбрана так, чтобы последнее равенство доказывалось наиболее просто (это равенство следует из теоремы о делении отрезка в данном отношении) .
в) Каждое из равенств = k1 , = k2 , = k3 , = p +q (где k1, k2, k3, p, q - некоторые числа, p+q=1, Q – произвольная точка плоскости) , a +b +g = 0 (a, b, g - некоторые числа, a+b+g = 0, Q -произвольная точка плоскости) означает принадлежность трех точек А, В, С одной прямой (два последних равенства следуют из теоремы о принадлежности трех точек одной прямой) .
г) . Равенство . = 0, где A ¹ B; C¹D, означает, что прямые АВ и СД перпендикулярны. (Указанное равенство следует из свойств скалярного произведения векторов.)
А) Любой человек из 6 А выше любого человека из 6 Б (по идее, верно)
Б) Самый высокий из 6 А выше самого высокого из 6 Б (тоже верно)
В) для любого ученика 6 А найдётся ученик 6 Б выше его ростом - нет, так как известно, что все люди из 6 А выше всех из 6 Б
Г) каждый ученик 6 А ниже хотя бы одного ученика 6 Б класса - нет, по той же причине
Д) для каждого ученика 6 А можно указать ученика 6 Б ниже его ростом при чем разным ученикам будут соответствовать разные ученики - да, какая разница, кто будет кому соответствовать, если все люди из А, выше всех из Б?
Е) для каждого ученика 6Б можно указать ученика 6 А выше его ростом при чем разным ученикам будут соответствовать разные ученики - Да, это тоже условие, что и в букве д)
Ж) самый высокий ученик 6 Б ниже самого высокого ученика 6 А - да, А класс выше
З) суммарный рост учеников 6 А больше суммарного роста учеников 6 Б - конечно, ведь рост каждого человека из 6 А больше каждого из 6 Б
К) средний рост учеников 6 а больше среднего роста учеников 6Б - смотря, что имеется в виду под словом "средний рост". Предположим, что тоже верно, ведь 6 А выше 6 Б
Если что-нибудь непонятно, пишите в комментарии, я постараюсь объяснить:)
При выяснении вопроса о применимости векторного метода к решению той или иной задачи, необходимо установить возможность выражения всех данных соотношений между известными и искомыми величинами на языке векторов. Если это можно сделать без больших затруднений, то есть смысл при решении такой задачи использовать векторы.
Решение геометрических задач с векторов протекает успешнее, если вы будете придерживаться общих правил поиска решения. Полезно использовать девять таких правил:
1. Начиная решать задачу, посмотрите, что дано и что требуется доказать; отделите условие задачи от ее заключения; запишите условие и заключение задачи через общепринятые обозначения.
2. Выясните все (по возможности) соотношения, из которых следует заключение задачи; запишите их в векторной форме.
3. Сопоставьте каждое из рассматриваемых соотношений с тем, что дано, и с рисунком и посмотрите, какое из них лучше выбрать для доказательства.
4. Из того, что дано, получите следствия, которые связаны (или могут быть связаны) с выбранным вами соотношением.
5. Выделяя на рисунке векторы, входящие в выбранное вами соотношение, постоянно задавайте себе вопрос: «Через какие векторы можно их выразить? » Для ответа на поставленный вопрос рассматривайте эти векторы во всех целесообразных (обнадеживающих) соотношениях с другими.
6. Если для выражения вектора через другие нужно сделать дополнительные построения на рисунке, сделайте их так, чтобы это выражение было наиболее простым.
7. Постоянно помните, что дано в условии задачи, и в случае затруднений проверьте, не упустили ли вы что-либо из условия.
8. Так как затруднения могут быть связаны также с тем, что вы не применили какую-либо задачу или теорему, то в случае затруднения постарайтесь мысленно перебрать известные вам теоремы и решенные задачи и подумать, нельзя ли воспользоваться какой-нибудь из них.
9. Если выбранное вами соотношение (по правилу 2) не удалось доказать, применив все правила 4-8, то выберите другое и снова выполняйте правила 4-8 уже относительно него.
Пошаговое объяснение:
I. Для овладения умением переходить от геометрического языка к векторному и обратно необходимо знать, как то или иное векторное соотношение выражается на геометрическом языке. Например:
а) Равенство = k (k –некоторое число) , означает, что прямые АВ и СД параллельны.
б) Равенства = m/n и = n/(m+n) + m/(m+n) , (m,n –некоторые числа, Q –произвольная точка плоскости) означают, что точка С делит некоторый отрезок АВ в отношении m к n, т. е. AC : CB = m : n. При этом точка Q может быть выбрана так, чтобы последнее равенство доказывалось наиболее просто (это равенство следует из теоремы о делении отрезка в данном отношении) .
в) Каждое из равенств = k1 , = k2 , = k3 , = p +q (где k1, k2, k3, p, q - некоторые числа, p+q=1, Q – произвольная точка плоскости) , a +b +g = 0 (a, b, g - некоторые числа, a+b+g = 0, Q -произвольная точка плоскости) означает принадлежность трех точек А, В, С одной прямой (два последних равенства следуют из теоремы о принадлежности трех точек одной прямой) .
г) . Равенство . = 0, где A ¹ B; C¹D, означает, что прямые АВ и СД перпендикулярны. (Указанное равенство следует из свойств скалярного произведения векторов.)
1 вопрос:
АБДЕЖЗК
2 вопрос:
Все наоборот - В и Г
3 вопрос:
ДЕ, АБ, ВГ, ЖЗ, ИК
Пошаговое объяснение:
Так. Попробуем разобраться.
А) Любой человек из 6 А выше любого человека из 6 Б (по идее, верно)
Б) Самый высокий из 6 А выше самого высокого из 6 Б (тоже верно)
В) для любого ученика 6 А найдётся ученик 6 Б выше его ростом - нет, так как известно, что все люди из 6 А выше всех из 6 Б
Г) каждый ученик 6 А ниже хотя бы одного ученика 6 Б класса - нет, по той же причине
Д) для каждого ученика 6 А можно указать ученика 6 Б ниже его ростом при чем разным ученикам будут соответствовать разные ученики - да, какая разница, кто будет кому соответствовать, если все люди из А, выше всех из Б?
Е) для каждого ученика 6Б можно указать ученика 6 А выше его ростом при чем разным ученикам будут соответствовать разные ученики - Да, это тоже условие, что и в букве д)
Ж) самый высокий ученик 6 Б ниже самого высокого ученика 6 А - да, А класс выше
З) суммарный рост учеников 6 А больше суммарного роста учеников 6 Б - конечно, ведь рост каждого человека из 6 А больше каждого из 6 Б
К) средний рост учеников 6 а больше среднего роста учеников 6Б - смотря, что имеется в виду под словом "средний рост". Предположим, что тоже верно, ведь 6 А выше 6 Б
Если что-нибудь непонятно, пишите в комментарии, я постараюсь объяснить:)