Неравенство: (a-3)x^2 - (a+1)x + (a+1) >= 0 В общем, нужно понять, что если ветви параболы направлены вверх и неравенство f(x) >= 0 выполняется при любом х, то возможны два случая, нарисованные на картинке: Или вершина касается оси Ох (D = 0), или находится выше (D < 0).
1) Вершина параболы находится на оси Ox и D = 0. D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) = 0 a1 = -1, a2 = 13/3
2) Вершина находится выше оси Ox и D < 0 D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) < 0 a < -1 U a > 13/3
По факту можно было решить одно неравенство D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) <= 0 a <= -1 U a >= 13/3
Но еще нужно учесть вот какой момент. Если член x^2 = 0, то парабола вырождается в прямую, и она уже не будет положительна при любых х. То есть при каком-то х она пересечет ось Ох и станет отрицательной. Поэтому a =/= 3 = 9/3 < 13/3. Но нам повезло, число 3 и так не входит в ответ. ответ: a принадлежит (-oo; -1] U [13/3; +oo)
Цифры 2 и 5 могут участвовать как в часах, так и в минутах. 1) Найдем сколько раз могут встречаться в часах цифры 2 и 5. 02 ч 05 ч 12 ч 15 ч 20 ч 21 ч 22 ч 23 ч Итого 8 вариантов При этом смена цифр в минутах на табло для каждого варианта будет равно 60 (60 минут в часе). Значит количество вариантов для часов с цифрами 2 и 5 будет 8*60=480 вариантов
2) А если в разрядах часов нет ни 2 ни 5, то будут годиться только показания минут с 2 или 5. При этом у нас уже учтены варианты с цифрами 2 и 5 в часах. Значит без этих вариантов для часов у нас остается: 24-8=16 часов без цифр 2 и 5.
Количество минут в сутках с цифрами 2 и 5. Для начала найдем сколько раз встречаются цифры 2 и 5 в 1 часе. Минуты за 1 час : 02 мин 05 мин 12 мин 15 мин 20 мин 21 мин 22 мин 23 мин 24 мин 25 мин 26 мин 27 мин 28 мин 29 мин 32 мин 35 мин 42 мин 45 мин 50 мин 51 мин 52 мин 53 мин 54 мин 55 мин 56 мин 57 мин 58 мин 59 мин
Итого 28 вариантов за 1 час
16*28=448 вариантов
480+448=928 комбинаций для электронных часов, где встречаются цифры 2 и 5.
ответ 928 раз в сутки в наборе цифр на табло этих часов участвуют цифры 2 и 5 или только одна из этих цифр
(a-3)x^2 - (a+1)x + (a+1) >= 0
В общем, нужно понять, что если ветви параболы направлены
вверх и неравенство f(x) >= 0 выполняется при любом х, то
возможны два случая, нарисованные на картинке:
Или вершина касается оси Ох (D = 0), или находится выше (D < 0).
1) Вершина параболы находится на оси Ox и D = 0.
D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) = 0
a1 = -1, a2 = 13/3
2) Вершина находится выше оси Ox и D < 0
D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) < 0
a < -1 U a > 13/3
По факту можно было решить одно неравенство
D = (a+1)^2 - 4(a-3)(a+1) = (a+1)(a+1 - 4(a-3)) = (a+1)(13-3a) <= 0
a <= -1 U a >= 13/3
Но еще нужно учесть вот какой момент.
Если член x^2 = 0, то парабола вырождается в прямую, и она уже не будет положительна при любых х. То есть при каком-то х она пересечет ось Ох и станет отрицательной.
Поэтому a =/= 3 = 9/3 < 13/3.
Но нам повезло, число 3 и так не входит в ответ.
ответ: a принадлежит (-oo; -1] U [13/3; +oo)
1) Найдем сколько раз могут встречаться в часах цифры 2 и 5.
02 ч 05 ч 12 ч 15 ч 20 ч 21 ч 22 ч 23 ч
Итого 8 вариантов
При этом смена цифр в минутах на табло для каждого варианта будет равно 60 (60 минут в часе).
Значит количество вариантов для часов с цифрами 2 и 5 будет
8*60=480 вариантов
2) А если в разрядах часов нет ни 2 ни 5, то будут годиться только показания минут с 2 или 5. При этом у нас уже учтены варианты с цифрами 2 и 5 в часах.
Значит без этих вариантов для часов у нас остается:
24-8=16 часов без цифр 2 и 5.
Количество минут в сутках с цифрами 2 и 5.
Для начала найдем сколько раз встречаются цифры 2 и 5 в 1 часе.
Минуты за 1 час :
02 мин 05 мин 12 мин 15 мин 20 мин 21 мин 22 мин 23 мин 24 мин 25 мин 26 мин 27 мин 28 мин 29 мин 32 мин 35 мин 42 мин 45 мин
50 мин 51 мин 52 мин 53 мин 54 мин 55 мин 56 мин 57 мин 58 мин 59 мин
Итого 28 вариантов за 1 час
16*28=448 вариантов
480+448=928 комбинаций для электронных часов, где встречаются цифры 2 и 5.
ответ 928 раз в сутки в наборе цифр на табло этих часов участвуют цифры 2 и 5 или только одна из этих цифр