Кто разибирается интегралах Приблеженное вычисление определнных интергралов 10.191 Решить по формуле трапеции 10.223 найти, на сколько частей нужно разбить промежуток интегрирования, чтобы по формуле трапеций вычислить интегралы с точностью до 0,001.
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
Пошаговое объяснение:
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
Пошаговое объяснение:
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
- Ай, хай, оныгым килгән бит. Собхан алла, маш алла. Мин сине инде күптән көтәм. Әнә, песиебез Җанбай сине, Алмаз, ничек каршылый. Ул да синең килүеңә бик шат. Әнә ничек куана.
- Чыннан да, кызык. Тик тавыклар гына мин килгәч курыктылар, барысы да абзарга йөгерештеләр.
-Алар бөтен кешедән куркалар. Миннән дә куркып алалар. Бик тә шуңа аптырап алам кайчагында.
- Алты тулды инде. Хәзер көтү кайта башлый. Әйдә киттек, капкага чыгыйк. Сыерыбызны, Дочканы, каршы алырга кирәк.
- Кара, әби, күпме сыер. Бер, ике, өч, биш, ун, боларны санап та бетереп булмый ич.
-Егерме биш сыер булырга тиеш.
-Ә бәтиләр бармы.
-Бар, тик аларнын санын мин үзем дә белмим.
- Әнә арттан көтүчеләр дә киләләр.
- Артларыннан эт тә ияреп бара. Арган, телләрен чыгарган. Әйдә киттек, сыерга су бирик. Бүген эссе көн булды, сусагандыр.
-Киттек.