а)
2x +3 y = 10
-2x + 5y = 6
2x+3y = 10
-2x = 6 - 5y
2x = -6 + 5y
Подставляем -6 + 5у вместо 2х в первое уравнение
-6 + 5y + 3y = 10
8y = 10 + 6
8y = 16
y = 16/8
y = 2
Теперь y = 2 подставим в уравнение 2x = -6 + 5y
2x = -6 + 5*2
2x = -6 + 10
2x = 10 - 6
2x = 4
x = 4/2
x = 2
Проверяем (Подставляем x и y в исходные уравнения)
2*2 +3*2 = 10
4 + 6 = 10
Верно
-2*2 + 5*2 = 6
-4 + 10 = 6
10 - 4 = 6
Верно.
б)
3x - y =2
x + 2y = 10
x = 10 - 2y
Подставялем в первое уравнение 10 - 2y вместо x
3*(10-2y) - y = 2
30 - 6y - y = 2
-7y = -28
7y = 28
y = 28/7
y = 4
Подставляем y = 4 в уравнение x = 10 - 2y
x = 10 - 2*4
x = 10 - 8
Проверяем, подставив y = 4 и x = 2 в исходные уравнения
3*2 - 4 = 2
6 - 4 = 2
2 + 2*4 = 10
2 + 8 = 10
Дано: y = (x²-3)/(x+1)
ИССЛЕДОВАНИЕ
1. Область определения.
x-1 ≠ 0, Х≠ 1 - разрыв функции при Х=1. Разрыв II-го рода (неустранимый)
Х∈(-∞;1)∪(1;+∞)
2. Вертикальная асимптота: Х= 1.
3. Пересечение с осью Х.
x²-3 = 0. Нули функции: x1 = - √3, х2 = √3
4. Пересечение с осью У.
Y(0) = 3.
5 Наклонная асимптота.
Уравнение асимптоты: y = k*x+b
k = lim(+∞)Y(x)/x = (x²-3)/(x²-1) = 1
b = lim(+∞) Y(x) - k*x = lim(+∞)(x-3)/(x-1) = 1
Y = x +1. - наклонная асимптота.
6. Проверка на чётность.
Y(-x) ≠ Y(x). Y(-x) ≠ - Y(x) Функция ни четная ни нечетная - общего вида..
7. Поведение в точке разрыва.
lim(->1-) Y(x) = -∞.lim(->1+) Y(x) = +∞.
8, Первая производная.
Y'(x)= 2x/(x-1)- (x²-3)/(x-1)² = (x² - 2*x + 3)/(x-1)² = 0
x² - 2x+3 = 0
Корней нет
9. Локальных экстремумов - нет.
10. Участки монотонности функции.
Возрастает во всей области определения- Х∈(-∞;1)∪(1;+∞).
11. Вторая производная.
Y"(x)= 2*(x-1}/(x-1)²- 2*(x²-2x+3)/(x-1)³ = -4/(x-1)³=0
Корней нет. Точек перегиба (на графике) - нет.
Перегиб в точке разрыва - х=1
12. Вогнутая - "ложка" - Х∈(-∞;1), выпуклая - "горка" - Х∈(1;+∞).
13. График в приложении
а)
2x +3 y = 10
-2x + 5y = 6
2x+3y = 10
-2x = 6 - 5y
2x+3y = 10
2x = -6 + 5y
Подставляем -6 + 5у вместо 2х в первое уравнение
-6 + 5y + 3y = 10
8y = 10 + 6
8y = 16
y = 16/8
y = 2
Теперь y = 2 подставим в уравнение 2x = -6 + 5y
2x = -6 + 5*2
2x = -6 + 10
2x = 10 - 6
2x = 4
x = 4/2
x = 2
Проверяем (Подставляем x и y в исходные уравнения)
2*2 +3*2 = 10
4 + 6 = 10
Верно
-2*2 + 5*2 = 6
-4 + 10 = 6
10 - 4 = 6
Верно.
б)
3x - y =2
x + 2y = 10
3x - y =2
x = 10 - 2y
Подставялем в первое уравнение 10 - 2y вместо x
3*(10-2y) - y = 2
30 - 6y - y = 2
-7y = -28
7y = 28
y = 28/7
y = 4
Подставляем y = 4 в уравнение x = 10 - 2y
x = 10 - 2*4
x = 10 - 8
x = 2
Проверяем, подставив y = 4 и x = 2 в исходные уравнения
3*2 - 4 = 2
6 - 4 = 2
Верно
2 + 2*4 = 10
2 + 8 = 10
Верно.
Дано: y = (x²-3)/(x+1)
ИССЛЕДОВАНИЕ
1. Область определения.
x-1 ≠ 0, Х≠ 1 - разрыв функции при Х=1. Разрыв II-го рода (неустранимый)
Х∈(-∞;1)∪(1;+∞)
2. Вертикальная асимптота: Х= 1.
3. Пересечение с осью Х.
x²-3 = 0. Нули функции: x1 = - √3, х2 = √3
4. Пересечение с осью У.
Y(0) = 3.
5 Наклонная асимптота.
Уравнение асимптоты: y = k*x+b
k = lim(+∞)Y(x)/x = (x²-3)/(x²-1) = 1
b = lim(+∞) Y(x) - k*x = lim(+∞)(x-3)/(x-1) = 1
Y = x +1. - наклонная асимптота.
6. Проверка на чётность.
Y(-x) ≠ Y(x). Y(-x) ≠ - Y(x) Функция ни четная ни нечетная - общего вида..
7. Поведение в точке разрыва.
lim(->1-) Y(x) = -∞.lim(->1+) Y(x) = +∞.
8, Первая производная.
Y'(x)= 2x/(x-1)- (x²-3)/(x-1)² = (x² - 2*x + 3)/(x-1)² = 0
x² - 2x+3 = 0
Корней нет
9. Локальных экстремумов - нет.
10. Участки монотонности функции.
Возрастает во всей области определения- Х∈(-∞;1)∪(1;+∞).
11. Вторая производная.
Y"(x)= 2*(x-1}/(x-1)²- 2*(x²-2x+3)/(x-1)³ = -4/(x-1)³=0
Корней нет. Точек перегиба (на графике) - нет.
Перегиб в точке разрыва - х=1
12. Вогнутая - "ложка" - Х∈(-∞;1), выпуклая - "горка" - Х∈(1;+∞).
13. График в приложении