Предположим векторы a и b - противоположные стороны. Тогда необходимо достаточно чтобы их длины были равны, а сами они были коллинеарны. Но даже условие коллинеарности для этих векторов не может быть выполнено, так как система {x=k {x-2=3k {x-1=4k Не имеет решений. Остается второй вариант, прямоугольник построен на а и b как на соседних сторонах, тогда необходимо и достаточно, чтобы они были перпендикулярны, а это условие в свою очередь эквивалентно условию равенства нулю скалярного произведения, то есть x+3(x-2)+4(x-1)=0, то есть 8x=10, x=5/4.
{x=k
{x-2=3k
{x-1=4k
Не имеет решений.
Остается второй вариант, прямоугольник построен на а и b как на соседних сторонах, тогда необходимо и достаточно, чтобы они были перпендикулярны, а это условие в свою очередь эквивалентно условию равенства нулю скалярного произведения, то есть x+3(x-2)+4(x-1)=0, то есть 8x=10, x=5/4.
2х=3+9 3х=59-17 х/4= 15+13
2х=12 3х=42 х/4=28
х=12/2 х=42/3 х=28*4
х=6 х=14 х=112
х/9+27=40 4х+31=57 х/12+38=43
х/9=40-27 4х=57-31 х/12=43-38
х/9=13 4х=26 х/12=5
х=13*9 х=26/4 х=5*12
х=117 х=6,5 х=60