точка о -центр окружности. концы радиусов обозначим а и в. соединим концы радиусов, получим хорду ав. рассмотрим полученный треугольник аов.
он равнобедренный, т.к ао=во = 8 см.. из вершины о проведём высоту он к хорде. получили 2 тр-ка. рассмотрим тр-ник вон. угол нов = 120: 2 = 60 гр., т.к. высота равнобедренного тр-ника делит этот угол пополам. угол вон = 90гр. угол в = 180 -60 -90 =30 гр. высота он лежит против угла 30 гр и равна половине гипотенузы он. во= 8/2 = 4 см.
Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур (исторически, для многоугольников, затем понятие было расширено на квадрируемыеПерейти к разделу «#Квадрируемые фигуры» фигуры) и обладающая свойствами площадиПерейти к разделу «#Свойства»[1]. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру» (например, вырезанным из бумаги квадратом большей площади можно полностью закрыть меньший квадрат), a оценить площадь фигуры можно с наложения на её рисунок сетки из линий, образующих одинаковые квадратики (единицы площади) и подсчитав число квадратиков и их долей, попавших внутрь фигуры (на рисунке справа). В широком смысле понятие площади обобщается на k-мерные поверхности в n-мерном пространстве (евклидовом или римановом), в частности, на двумерную поверхность в трёхмерном пространствеПерейти к разделу «#Площадь поверхности».
ответ:
пошаговое объяснение:
точка о -центр окружности. концы радиусов обозначим а и в. соединим концы радиусов, получим хорду ав. рассмотрим полученный треугольник аов.
он равнобедренный, т.к ао=во = 8 см.. из вершины о проведём высоту он к хорде. получили 2 тр-ка. рассмотрим тр-ник вон. угол нов = 120: 2 = 60 гр., т.к. высота равнобедренного тр-ника делит этот угол пополам. угол вон = 90гр. угол в = 180 -60 -90 =30 гр. высота он лежит против угла 30 гр и равна половине гипотенузы он. во= 8/2 = 4 см.
ответ: 4 см
Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур (исторически, для многоугольников, затем понятие было расширено на квадрируемыеПерейти к разделу «#Квадрируемые фигуры» фигуры) и обладающая свойствами площадиПерейти к разделу «#Свойства»[1]. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру» (например, вырезанным из бумаги квадратом большей площади можно полностью закрыть меньший квадрат), a оценить площадь фигуры можно с наложения на её рисунок сетки из линий, образующих одинаковые квадратики (единицы площади) и подсчитав число квадратиков и их долей, попавших внутрь фигуры (на рисунке справа). В широком смысле понятие площади обобщается на k-мерные поверхности в n-мерном пространстве (евклидовом или римановом), в частности, на двумерную поверхность в трёхмерном пространствеПерейти к разделу «#Площадь поверхности».
Пошаговое объяснение: