В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
azaliyazaynulinnf
azaliyazaynulinnf
05.02.2022 09:53 •  Математика

мастер выполняет работу на 5ч быстрее чем ученик. Работая вместе выполняют работу за 6ч. За какое время могут выполнить каждый, работая по отдельности?​

Показать ответ
Ответ:
Kirillpakharenko
Kirillpakharenko
13.03.2020 22:36

ответ: y=√[-2*x²-2*x-1+C*e^(2*x)]

Пошаговое объяснение:

Разделив обе части уравнения на y, получим уравнение y'-y=2*x²/y. Это есть уравнение Бернулли вида y'+p(x)*y=f(x)*y^n, где p(x)=-1, f(x)=2*x² и n=-1. Произведём замену переменной по формуле z=y^(1-n)=y². Отсюда y=√z, y'=z'/(2*√z) и уравнение принимает вид z'/(2*√z)-√z-2*x²/√z=0. Умножая его на 2*√z, получаем линейное уравнение относительно z: z'-2*z-4*x²=0. Полагая z=u*v, где u и v - неизвестные пока функции от x, получаем уравнение u'*v+u*v'-2*u*v-4*x²=0, которое запишем в виде v*(u'-2*u)+u*v'-4*x²=0. Так как одной из функций u или v мы можем распорядиться по произволу, то поступим так с u и потребуем выполнения условия u'-2*u=0. Решая это дифференциальное уравнение, найдём u=e^(2*x). Подставляя это выражение в уравнение u*v'-4*x²=0, получим уравнение v'=dv/dx=4*x²*e^(-2*x). Отсюда dv=4*x²*e^(-2*x)*dx и, интегрируя, находим v=-2*x²*e^(-2*x)-2*x*e^(-2*x)-e^(-2*x)+C, где C - произвольная постоянная. Тогда z=u*v=-2*x²-2*x-1+C*e^(2*x) и y=√z=√[-2*x²-2*x-1+C*e^(2*x)]. Проверка: y'=[-4*x-2+2*C*e^(2*x)]/{2*√[-2*x²-2*x-1+C*e^(2*x)]}, y*y'=-2*x-1+C*e^(2*x), y²+2*x²=-2*x²-2*x-1+C*e^(2*x)+2*x²=-2*x-1+C*e^(2*x), y*y'=y²+2*x² - получено исходное уравнение - значит, решение найдено верно.  

0,0(0 оценок)
Ответ:
zlatochkagr
zlatochkagr
13.03.2020 22:36

ответ: y=√[-2*x²-2*x-1+C*e^(2*x)]

Пошаговое объяснение:

Разделив обе части уравнения на y, получим уравнение y'-y=2*x²/y. Это есть уравнение Бернулли вида y'+p(x)*y=f(x)*y^n, где p(x)=-1, f(x)=2*x² и n=-1. Произведём замену переменной по формуле z=y^(1-n)=y². Отсюда y=√z, y'=z'/(2*√z) и уравнение принимает вид z'/(2*√z)-√z-2*x²/√z=0. Умножая его на 2*√z, получаем линейное уравнение относительно z: z'-2*z-4*x²=0. Полагая z=u*v, где u и v - неизвестные пока функции от x, получаем уравнение u'*v+u*v'-2*u*v-4*x²=0, которое запишем в виде v*(u'-2*u)+u*v'-4*x²=0. Так как одной из функций u или v мы можем распорядиться по произволу, то поступим так с u и потребуем выполнения условия u'-2*u=0. Решая это дифференциальное уравнение, найдём u=e^(2*x). Подставляя это выражение в уравнение u*v'-4*x²=0, получим уравнение v'=dv/dx=4*x²*e^(-2*x). Отсюда dv=4*x²*e^(-2*x)*dx и, интегрируя, находим v=-2*x²*e^(-2*x)-2*x*e^(-2*x)-e^(-2*x)+C, где C - произвольная постоянная. Тогда z=u*v=-2*x²-2*x-1+C*e^(2*x) и y=√z=√[-2*x²-2*x-1+C*e^(2*x)]. Проверка: y'=[-4*x-2+2*C*e^(2*x)]/{2*√[-2*x²-2*x-1+C*e^(2*x)]}, y*y'=-2*x-1+C*e^(2*x), y²+2*x²=-2*x²-2*x-1+C*e^(2*x)+2*x²=-2*x-1+C*e^(2*x), y*y'=y²+2*x² - получено исходное уравнение - значит, решение найдено верно.  

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота