Пусть х литров расходует легковой автомобиль на 100 км, тогда грузовой расходует х+10 литров бензина. Легковой автомобиль проезжает у км на 1 литре, тогда у-5 км проезжает грузовой автомобиль на 1 литре бензина. Составим и решим систему уравнений х*у=100 (х+10)/100=1/(у-5)
Выразим значение х из первого уравнения: х=100/у Подставим его во второе уравнение: (100/у+10)/100=1/(у-5) 100/у:100+10/100=1/(у-5) (сократим на 10) (100/у+10)/10=10/(у-5) 10/у+1=10/(у-5) (умножим на у(у-5)) 10у*(у-5)/у+1у(у-5)=10*у(у-5)/(у-5) 10(у-5)+у²-5у=10у 10у-50+у²-5у-10у=0 у²-5у-50=0 D=a²-4bc=(-5)²-4*1*(-50)=25+200=225 у₁=(-b+√D)/2a=(-(-5)+15)/2*1=20/2=10 у₂=(-b-√D)/2a=(-(-5)-15)/2*1=-10/2=-5<0 - не подходит. ответ: легковой автомобиль, расходуя 1 л бензина, может преодолеть 10 км.
Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
Легковой автомобиль проезжает у км на 1 литре, тогда у-5 км проезжает грузовой автомобиль на 1 литре бензина.
Составим и решим систему уравнений
х*у=100
(х+10)/100=1/(у-5)
Выразим значение х из первого уравнения:
х=100/у
Подставим его во второе уравнение:
(100/у+10)/100=1/(у-5)
100/у:100+10/100=1/(у-5) (сократим на 10)
(100/у+10)/10=10/(у-5)
10/у+1=10/(у-5) (умножим на у(у-5))
10у*(у-5)/у+1у(у-5)=10*у(у-5)/(у-5)
10(у-5)+у²-5у=10у
10у-50+у²-5у-10у=0
у²-5у-50=0
D=a²-4bc=(-5)²-4*1*(-50)=25+200=225
у₁=(-b+√D)/2a=(-(-5)+15)/2*1=20/2=10
у₂=(-b-√D)/2a=(-(-5)-15)/2*1=-10/2=-5<0 - не подходит.
ответ: легковой автомобиль, расходуя 1 л бензина, может преодолеть 10 км.
Скорость сближения велосипедистов равна:
15-10=5 (км/час)
Время сближения:
2 : 5=0,4 (час)
Время движения (t) у обоих велосипедистов одинаковое.
Первый велосипедист проедет расстояние:
S1=15*t
Обозначим количество кругов у первого велосипедиста за (n1)
При количестве кругов n1, расстояние пройденное первым велосипедистом составит:
S1=5*0,4*n1=2n1
Приравняем оба выражения S1
15t=2n1
Второй велосипедист проедет расстояние равное:
S2=10*t
Обозначим количество кругов у второго велосипедиста за (n2)
При количестве кругов n2, расстояние пройденное вторым велосипедистом составит:
S2=5*0,4*n2=2n2
Приравняем оба выражения S2
10t=2n2
Получилось два уравнения:
15t=2n1
10t=2n2
Разделим первое уравнение на второе, получим:
15t/10t=2n1/2n2
15/10=n1/n2
Делаем вывод, что минимальное количество кругов до встречи равно:
n1=15
n2=10
Из первого уравнения 15t=2n1 найдём значение (t)
t=2n1/15 подставим в это выражение n1=15
t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.