Медсестра в отделении каждое утро готовит таблетки на раздачу больным по листу назначения.имеется 5 больных с одинаковым назначением по 2 таблетки на прием.сколькими можно эти 10 таблеток распределить между больными?
Среднее количество дней в году: = (365•3+366)/4 = 365.25 дней среднее количество дней в квартале: d=365.25/4 = 91.3125 дней показатели в начальном периоде: коэффициент оборачиваемости (кол-во оборотов за период) k° = 100/25 = 4 раз продолжительность оборота: t°=d/k° = 91.3125/4 ≈ 22.828 дней показатели в конечном периоде: коэффициент оборачиваемости (кол-во оборотов за период) k¹ = 110/25 = 4.4 раз продолжительность оборота: t¹=d/k¹ = 91.3125/4.4 ≈ 20.753 дней изменение коэффициента оборачиваемости = 4.4-4 = +0.4 раз (или +10%) изменение продолжительности оборота=20.753-22.828=-2.075 дней или 1/(1+10%) -1=1/1.1-1≈-0.091≈-9.1% относительное высвобождение оборотных средств (из-за ускорения оборачиваемости) = 10/4 = -2.5 млн. руб. т. е. просто прирост продаж надо разделить на коэффициент оборачиваемости в начальном периоде.
(Построить графики не смогу, но закон распределения и функцию распределения найду). Пусть случайная величина (далее - СВ) х - число неточных приборов среди трёх взятых. Очевидно, что эта СВ может принимать значения 0,1,2,3. Вычислим вероятности этих значений: р(0)=(14/20)³=2744/8000=0,343, р(1)=(6/20)¹*(14/20)²*3!/(1!*(3-1)!)=1176/8000*6/2=3528/8000=0,441, р(2)=(6/20)²*(14/20)¹*3!/(2!*(3-2)!)=1512/8000=0,189, р(3)=(6/20)³=216/8000=0,027. (Проверка: 0,343+0,441+0,189+0,027=1, так что вероятности найдены верно) Таким образом, мы нашли закон распределения данной СВ, который можно записать в виде таблицы: Xi 0 1 2 3 Pi 0,343 0,441 0,189 0,027 По найденным данным можно построить многоугольник распределения и функцию распределения. Математическое ожидание М=∑Xi*Pi=0*0,343+1*0,441+2*0,189+3*0,027=0,9 Дисперсия D=∑(Xi-M)²*Pi=(0-0,9)²*0,343+(1-0,9)²*0,441+(2-0,9)²*0,189+(3-0,9)²*0,027=0,27783+0,00441+0,22869+0,11907=0,63.удачи