На прямую пропорциональность:1) При равномерном движении поезд за 4 секунды метров. Сколько метров проедет поезд за 20 секунд?Решение: 1) 20 : 4 = 5 (раз) во столько раз больше времени, значит и расстояние проедет в 5 раз больше. 2) 120 * 5 = 600 (м) - проедет поезд за 20 минут. 2) При равномерном движении поезд за 4 секунды метров. Сколько времени понадобиться ему, чтобы пройти расстояние 1км 200 м?Решение: 1) 1200 : 120 = 10 (раз) - во столько раз больше нужно пройти, следовательно времени потребуется также в 10 раз больше. 2) 4 * 10 = 40 (с) - потребуется на прохождение 1км 200 м.На обратно пропорциональную зависимость:1) Поезд участок пути со скоростью 75 км/ч за 4 часа. За сколько часов поезд пройдет этот же участок пути, если будет двигаться со скоростью 100 км/ч?Решение: 1) 75 * 4 = 300 (км) - путь, пройденный за 4 часа. Так как скорость увеличивается, то времени на прохождение того же участка пути понадобиться меньше. 2) 300 : 100 = 3 (часа) - время, необходимое на этот путь при скорости 100 км/ч.2) Закупили 6 метров ткани по 50 рублей. Сколько ткани можно купить на эту же сумму по цене 75 рублей?Решение: 1) 50 *6 = 300 (р) - стоимость покупки; С увеличением цены, количество купленной ткани уменьшается. 2) 300 : 75 = 4 (м) - ткани можно купить по цене 75 рублей.
Вынесем х за скобки:
х(х² - 12х + 32).
Разложим на множители квадратный трёхчлен в скобках.
Приравняем его нулю:
х² - 12х + 32 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-12)^2-4*1*32=144-4*32=144-128=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-12))/(2*1)=(4-(-12))/2=(4+12)/2=16/2=8;
x_2=(-√16-(-12))/(2*1)=(-4-(-12))/2=(-4+12)/2=8/2=4.
ответ: x^3-12x^2+32x = х(х - 8)(х - 4).
№523(г). Сократить дробь: г) b^2-25/b^2-8b+15.
Числитель - разность квадратов. b^2-25 = (b - 5)(b + 5).
Разложим на множители квадратный трёхчлен в знаменателе.
Приравняем его нулю:
b^2-8b+15 = 0
Квадратное уравнение, решаем относительно b:
Ищем дискриминант:D=(-8)^2-4*1*15=64-4*15=64-60=4;
Дискриминант больше 0, уравнение имеет 2 корня:
b_1=(√4-(-8))/(2*1)=(2-(-8))/2=(2+8)/2=10/2=5;
b_2=(-√4-(-8))/(2*1)=(-2-(-8))/2=(-2+8)/2=6/2=3.
Исходная дробь теперь имеет вид:
((b - 5)(b + 5)) / ((b - 5)(b - 3).
После сокращения на (b - 5), получаем:
ответ: b^2-25/b^2-8b+15 = (b + 5) / (b - 3).