В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sev200684
sev200684
29.12.2022 02:55 •  Математика

Мне нужно подробное решение. Не скрины онлайн-калькулятора. ответ должен быть (sinx)/x \lim_{n \to \infty} ( cos\frac{x}{2} cos\frac{x}{4} ... cos \frac{ 2 }^{2^{n} } } )

Показать ответ
Ответ:
sashapro228
sashapro228
29.11.2020 13:54

\dfrac{sinx}{x}

Пошаговое объяснение:

\lim\limits_{n\to\infty}cos\dfrac{x}{2}...cos\dfrac{x}{2^n}=\lim\limits_{n\to\infty}\dfrac{cos\frac{x}{2}...cos\frac{x}{2^n}\cdot 2^nsin\frac{x}{2^n}}{2^nsin\frac{x}{2^n}}=\\ =\lim\limits_{n\to\infty}\dfrac{cos\frac{x}{2}...cos\frac{x}{2^{n-1}}\cdot 2^{n-1}(2sin\frac{x}{2^n}cos\frac{x}{2^n})}{2^n\cdot\frac{x}{2^n}}=\\ =\lim\limits_{n\to\infty}\dfrac{cos\frac{x}{2}...cos\frac{x}{2^{n-1}}\cdot 2^{n-1}(sin\frac{x}{2^{n-1}})}{x}=

=\lim\limits_{n\to\infty}\dfrac{cos\frac{x}{2}...cos\frac{x}{2^{n-2}}\cdot 2^{n-2}(2sin\frac{x}{2^{n-1}}cos\frac{x}{2^{n-1}})}{x}=\\ =\lim\limits_{n\to\infty}\dfrac{cos\frac{x}{2}...cos\frac{x}{2^{n-2}}\cdot 2^{n-2}(sin\frac{x}{2^{n-2}})}{x}=...=\lim\limits_{n\to\infty}\dfrac{sinx}{x}=\dfrac{sinx}{x}

На месте многоточия операция сворачивания формулы синуса двойного аргумента повторяется еще n-2 раза. В результате получаем искомый ответ

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота