Александр Невский, Св. (после 1219/1220–1263), князь Новгородский (1236–1251), великий князь Владимирский (1252–1263), проявивший выдающиеся полководца и дипломата.В традицию Русской православной церкви образ «благоверного князя Александра Невского» вошел как новый тип святого воина, прославившегося не мученическими подвигами и не только личным благочестием, а в первую очередь своими государственными деяниями.Александр – сын великого князя Ярослава Всеволодовича и княгини Феодосии, внук великого князя Всеволода III Большое Гнездо. В 1239 женился на полоцкой княжне Александре Брячиславовне. Учитывая угрозу наступления шведских рыцарей, построил укрепления на р.Шелони. 15 июля 1240 сразился со шведами, когда те, помышляя о господстве над Новгородом, дошли на кораблях до устья р.Ижоры, впадающей в Неву. В этой битве, получившей имя «Невской» и давшей Александру его прозвище, иноземцы во главе с зятем шведского короля Биргером потерпели сокрушительное поражение, причем сам Александр «возложи» Биргеру «печать на лице острым своим копием», как бы пометив его рабским клеймом. Согласно житию князя, ижорский старейшина Пелгуй (или Пелугий) увидел на рассвете перед битвой ладью со святыми Борисом и Глебом, приплывшими сроднику своему князю Александру». На том же берегу, где полки Александра не смогли пройти, нашли «многое множество избиенных от ангела Господня». Так победа новгородцев обрела черты священного эпоса.
f(-x) = -(x³ - 12x²+ 45x - 50) ≠ f(x). Значит, функция общего вида.
3. Найти координаты точек пересечения графика функции с осями координат:
- с осью Оу при х = 0. у = 50.
- с осью Ох при у = 0.
Надо решить уравнение x³ + 12x²+ 45x + 50 = 0.
Находим корни этого уравнения среди множителей свободного члена.
50 = +-1*+-2*+-5*+-5.
При подстановке определяем: х = -2 и х = -5 (2 раза).
x³ + 12x²+ 45x + 50 = (х + 2)*(х + 5)*(х + 5) = 0. х = -2 и х = -5.
4. Исследовать функцию на непрерывность, определить характер точек разрыва функции, если они имеются; найти асимптоты кривой:
точек разрыва и асимптот функция не имеет.
5. Найти интервалы возрастания и убывания функции и ее экстремумы.
Производная равна 3x²+ 24x + 45 = 3(x²+ 8x + 15).
Приравниваем её нулю (множитель в скобках):
x²+ 8x + 15 = 0.
Д = 64 - 4*1*15 = 4. х = (-8 +- 2)/2 = -3 и -5.
Находим знаки производной на полученных промежутках.
х = -6 -5 -4 -3 -1
y' = 9 0 -3 0 24.
Переход с + на - это максимум (х = -5, у = 0), с - на + это минимум(х = -3, у = -4). На промежутке (-∞; -5) и (-3; +∞) функция возрастает, на промежутке (-5; -3) функция убывает.
6. Найти интервалы выпуклости вверх и выпуклости вниз; определить точки перегиба
Дана функция y=x³ +12x²+45x+50.
1. Определить область определения функции:
ограничений нет, вся числовая ось: D(f) = R.
2. Исследовать функцию на четность не четность:
f(-x) = (-x)³ + 12(-x)² + 45(-x) + 50 = -x³ + 12x²- 45x + 50 ≠ f(x),
f(-x) = -(x³ - 12x²+ 45x - 50) ≠ f(x). Значит, функция общего вида.
3. Найти координаты точек пересечения графика функции с осями координат:
- с осью Оу при х = 0. у = 50.
- с осью Ох при у = 0.
Надо решить уравнение x³ + 12x²+ 45x + 50 = 0.
Находим корни этого уравнения среди множителей свободного члена.
50 = +-1*+-2*+-5*+-5.
При подстановке определяем: х = -2 и х = -5 (2 раза).
x³ + 12x²+ 45x + 50 = (х + 2)*(х + 5)*(х + 5) = 0. х = -2 и х = -5.
4. Исследовать функцию на непрерывность, определить характер точек разрыва функции, если они имеются; найти асимптоты кривой:
точек разрыва и асимптот функция не имеет.
5. Найти интервалы возрастания и убывания функции и ее экстремумы.
Производная равна 3x²+ 24x + 45 = 3(x²+ 8x + 15).
Приравниваем её нулю (множитель в скобках):
x²+ 8x + 15 = 0.
Д = 64 - 4*1*15 = 4. х = (-8 +- 2)/2 = -3 и -5.
Находим знаки производной на полученных промежутках.
х = -6 -5 -4 -3 -1
y' = 9 0 -3 0 24.
Переход с + на - это максимум (х = -5, у = 0), с - на + это минимум(х = -3, у = -4). На промежутке (-∞; -5) и (-3; +∞) функция возрастает, на промежутке (-5; -3) функция убывает.
6. Найти интервалы выпуклости вверх и выпуклости вниз; определить точки перегиба
: y'' = (3x²+ 24x + 45)' = 6x + 24 = 6(x + 4) = 0.
Точка перегиба х = -4, у = -2.
Находим знаки второй производной на полученных промежутках.
x = -5 -4 -3
y'' = -6 0 6.
Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый:
• Выпуклая на промежутке: (-∞; -4).
• Вогнутая на промежутке: (-4; +∞).
7. Построить график функции.
Таблица точек:
x y
-7.0 -20
-6.5 -10.1
-6.0 -4
-5.5 -0.9
-5.0 0
-4.5 -0.6
-4.0 -2
-3.5 -3.4
-3.0 -4
-2.5 -3.1
-2.0 0
-1.5 6.1
-1.0 16
График - в приложении.
1. определить область существ" />