1. 12x всегда делится на 2. Сумма четного числа с каким-то будет четной, если второе число тоже будет четным. Т.е. 45y должно быть четным, т.е. y должно быть четным. Т.о. в качестве x можно взять любое число, а в качестве y - любое четное число. Три пары: (1, 2), (2, 4), (117, 65536).
2. 45y всегда делится на 5. Сумма не будет делиться на 5, если 12x не будет делиться на 5. Т.к. 5 и 12 взаимно просты, то выражение 12x делится на 5 только в том случае, если x делится на 5. Значит, в качестве x нужно взять любое число, не делящееся на 5, а в качестве y - любое число. Три пары: (1, 1), (2, 2), (117, 65536).
3. 12x делится на 2 при любом x. Значит, (см.1) y должно быть четным. 45y делится на 5 при любом y. Значит, (см.2) x должно делиться на 5. Три пары: (5, 2), (10, 4), (65535, 65536).
4. x не должно делиться на 5, y должно быть нечетным. Три пары: (1, 1), (2, 3), (117, 65535).
Т.е. 45y должно быть четным, т.е. y должно быть четным.
Т.о. в качестве x можно взять любое число, а в качестве y - любое четное число.
Три пары: (1, 2), (2, 4), (117, 65536).
2. 45y всегда делится на 5. Сумма не будет делиться на 5, если 12x не будет делиться на 5. Т.к. 5 и 12 взаимно просты, то выражение 12x делится на 5 только в том случае, если x делится на 5.
Значит, в качестве x нужно взять любое число, не делящееся на 5, а в качестве y - любое число.
Три пары: (1, 1), (2, 2), (117, 65536).
3. 12x делится на 2 при любом x. Значит, (см.1) y должно быть четным.
45y делится на 5 при любом y. Значит, (см.2) x должно делиться на 5.
Три пары: (5, 2), (10, 4), (65535, 65536).
4. x не должно делиться на 5, y должно быть нечетным.
Три пары: (1, 1), (2, 3), (117, 65535).
9/2
Пошаговое объяснение:
Чертим графики, получаем область фигуры и затем по формуле Ньютона-Лейбница вычисляем площадь.
Формула Ньютона-Лейбница
Первый график
Значит мы берем известный график функции у=х² и смещаем его по оси ОХ на (-2)/
Второй график строим по двум точкам
х 0 1
у 4 5
Графики построили, получили пределы интегрирования
а = -3; b = 0
За у₁(х) принимаем функцию, график которой находится "выше" на интервале [a^ b].
У нас это функция
у₁(х) = х + 4
Теперь находим площадь
ответ
S = 9/2