На одном из первых занятий по составлению арифметических задач детей просят повторить составленную задачу. Коля повторяет задачу так: «У Ларисы было 3 кубика, один она отдала Сереже. У Ларисы осталось два кубика». Света повторяет эту же задачу так: «У Ларисы были кубики, и она отдала один Сереже. Сколько кубиков стало у Сережи?» Вопросы: 1.На каком этапе ведется работа по составлению арифметических задач? 2. Какие ошибки допустили дети? В чем причина этих ошибок? 3. Какую работу нужно провести воспитателю на данном занятии, чтобы дети в дальнейшем правильно составляли задачи?
Решать подобные задачи использование диаграмм.
Очертим три окружности, означающие драмкружок, спортсменов и хор. Области пересечений окружностей означают одновременную принадлежность к двум или трем категориям занятий. Начнем заполнение.
1. Всем трем областям соответствует условие "3 спортсмена посещают и драмкружок, и хор)". Ставим число 3 (помечено красным).
2. В драмкружке 10 ребят из хора. Следовательно, в области пересечения "Драмкружок+хор" должно находиться число 10. Но часть этой области пересекается с областью, где находятся все три категории занятий, поэтому из 10 вычитаем стоящую в этой области красную тройку и получаем число 7 (помечено синим). Т.е. посещают драмкружок и хор, но не занимаются спортом 7 человек.
3. В хоре 6 спортсменов. Рассуждая аналогично (2) получаем синее число 3.
4. В драмкружке 8 спортсменов. Получаем синее число 5.
5. 27 ребят занимаются в драмкружке. Вычитаем из этого количества число ребят, принадлежащее общим областям 7+5+3=15 и получаем 27-15=12 человек, которые занимаются только в драмкружке.
6. Аналогично получаем 11 спортсменов и 19 участников хора.
7. Всего 70 учеников. Вычитая количество учеников, которые чем-либо заняты, определяем, что 10 человек не заняты ничем.
8. Только спортом, как видно из рисунка, занимаются 11 человек
Пошаговое объяснение:
Прямая АВ , проходящая через начало координат имеет вид у=кх
По следствию из неравенства о среднем арифметическом и среднем геометрическом, то принимает наименьшее значение равное 2 , а к1=20, к2=25, то ОМ²=2*√20*√25=2*4.47*5=44,7.
Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."
Формула расстояния между точками d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
Ответ: 44,7.