На плане одного из районов города клетками изображены кварталы, каждый из которых имеет форму прямоугольника с длинной 100 м и шириной 90 м. Ширина всех улиц в этом районе - 35 м.
Катет (высота трапеции) которого будет 4х, а гипотенуза - 5х, а другой катет будет составлять 9 см. Свяжем стороны этого треугольника с теоремы Пифагора: 16х в квадрате + 81 = 25 х в квадрате, откуда 9х в квадрате = 9, х в квадрате = 9, х=3. Значит боковые стороны равны 12 см и 15 см. Теперь рассмотрим прямоугольный треугольник, гипотенузой которого является большая диагональ трапеции, равная 20 см, а катеты -12 и у+9. Применим теорему Пифагора к этому треугольнику. Получим (у+9)в квадрате + 144 = 400 у в квадрате +18у +81 +144=400 у в квадрате +18у - 175=0 у =-25 (не уд. условию задачи) , у=7, а значит, меньшее основание равно 7см, а большее - 16см. Отсюда, зная, что средняя линия трапеции равна полусумме оснований, получаем (7+16):2=11,5 (см) . ответ: средняя линия данной трапеции равна 11,5 см.
Утверждение: (– а ˃ -6) – неверное, так как (– а ˂ -6).
2) 6 ˂ а ˂ 7
9 – 7 ˂ 9 – а ˂ 9 – 6
2 ˂ 9 – а ˂ 3
Утверждение: (9 – a < 0) – неверное, т.к. 0 ˂ 2, а (9 – 2) ˃ 2.
3) В задании 3 не указано, чему равно а. Указано только числовое значение без переменной 1 ˃ 0. Сравнить это выражение с «а» невозможно. Числовое выражение 1 ˃ 0 – верное.
4) 6 ˂ а ˂ 7
6 - 8 ˂ а - 8 ˂ 7 – 8
-2 ˂ а - 8 ˂ -1
Выражение (a – 8 > 0) – неверное, так как 0 ˃ -1, а (а – 8) ˂ -1.
х=3. Значит боковые стороны равны 12 см и 15 см. Теперь рассмотрим прямоугольный треугольник, гипотенузой которого является большая диагональ трапеции, равная 20 см, а катеты -12 и у+9. Применим теорему Пифагора к этому треугольнику. Получим (у+9)в квадрате + 144 = 400
у в квадрате +18у +81 +144=400
у в квадрате +18у - 175=0
у =-25 (не уд. условию задачи) , у=7, а значит, меньшее основание равно 7см, а большее - 16см. Отсюда, зная, что средняя линия трапеции равна полусумме оснований, получаем (7+16):2=11,5 (см) .
ответ: средняя линия данной трапеции равна 11,5 см.
1) На координатной оси видно, что:
6 ˂ а ˂ 7.
- 7 ˂ - а ˂ - 6
Утверждение: (– а ˃ -6) – неверное, так как (– а ˂ -6).
2) 6 ˂ а ˂ 7
9 – 7 ˂ 9 – а ˂ 9 – 6
2 ˂ 9 – а ˂ 3
Утверждение: (9 – a < 0) – неверное, т.к. 0 ˂ 2, а (9 – 2) ˃ 2.
3) В задании 3 не указано, чему равно а. Указано только числовое значение без переменной 1 ˃ 0. Сравнить это выражение с «а» невозможно. Числовое выражение 1 ˃ 0 – верное.
4) 6 ˂ а ˂ 7
6 - 8 ˂ а - 8 ˂ 7 – 8
-2 ˂ а - 8 ˂ -1
Выражение (a – 8 > 0) – неверное, так как 0 ˃ -1, а (а – 8) ˂ -1.