Нехай ABCD - заданий прямокутник, O - точка перетину діагоналей, AB=4, кут AOB = 60 градусів, АС - шукана діагональ
Розв'язання
Оскільки АBCD - прямокутник, його діагоналі рівні й точкою перетину діляться навпіл, тому АО=ВО. Отже, трикутник АОВ - рівнобедренний
За умовою кут АОВ дорівнює 60 градусів. Тоді кути при основі трикутника АОВ рівні і дорівнюють (180-60)/2=60 градусів. Оскільки у трикутника АОВ всі кути рівні, він - рівносторонній
= 8/3 + 2 + 1/3 + 1 = 9/3 + 3 = 6
2) Int (-2; 4) (x^3/3) dx = -Int (-2, 0) (x^3/3) dx + Int (0, 4) (x^3/3) dx =
= -x^4/12 | (-2; 0) + x^4/12 | (0; 4) = 0 + (-2)^4/12 + 4^4/12 - 0 =
= 16/12 + 256/12 = 4/3 + 64/3 = 68/3
Часть графика от -2 до 0 находится ниже оси Ох, поэтому ее нужно прибавить, а не вычесть.
3) Найдем точки пересечения графиков
x^2 = -3x
x^2 + 3x = x(x + 3) = 0
x1 = -3; x2 = 0
График y = -3x в этой области лежит выше, чем y = x^2
Int (-3; 0) (-3x - x^2) dx = (-3x^2/2 - x^3/3) | (-3; 0) =
= 0 - (-3*(-3)^2/2 - (-3)^3/3) = -(-3*9/2 + 27/3) = 27/2 - 9 = 13,5 - 9 = 4,5
Нехай ABCD - заданий прямокутник, O - точка перетину діагоналей, AB=4, кут AOB = 60 градусів, АС - шукана діагональ
Розв'язання
Оскільки АBCD - прямокутник, його діагоналі рівні й точкою перетину діляться навпіл, тому АО=ВО. Отже, трикутник АОВ - рівнобедренний
За умовою кут АОВ дорівнює 60 градусів. Тоді кути при основі трикутника АОВ рівні і дорівнюють (180-60)/2=60 градусів. Оскільки у трикутника АОВ всі кути рівні, він - рівносторонній
Тоді АО=ВО=АВ=4(см)
Оскільки АО=ОС, АС = 4+4=8(см)
Відповідь: 8 см