Відповідь:
Исследуем функцию, заданную формулой: yx=x3-3x
Область определения: множество всех действительных чисел
Первая производная: y'x=3x2-3
x3-3x' =
=x3'-3x' =
=3x2-3x' =
=3x2-3•1 =
=3x2-3
Вторая производная: y''x=6x
Вторая производная это производная от первой производной.
3x2-3' =
=3x2'-3' =
=3x2'-0 =
=3x2' =
=32x =
=3•2x =
=6x
Точки пересечения с осью x : x=-3;x=0;x=3
Для нахождения точек пересечения с осью абсцисс приравняем функцию к нулю.
x3-3x=0
Решаем уравнение методом разложения на множители.
xx2-3=0
решение исходного уравнения разбивается на отдельные случаи.
Случай 1 .
x=0
Случай 2 .
x2-3=0
Перенесем известные величины в правую часть уравнения.
x2=3
ответ этого случая: x=-3;x=3 .
ответ: x=-3;x=0;x=3 .
Точки пересечения с осью y : y=0
Пусть x=0
y0=03-3•0=0
Вертикальные асимптоты: нет
Горизонтальные асимптоты: нет .
Наклонные асимптоты: нет .
yx стремится к бесконечности при x стремящемся к бесконечности.
yxx стремится к бесконечности при x стремящемся к бесконечности.
Критические точки: x=-1;x=1
Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.
3x2-3=0
3x2=3
x2=3:3
x2=1
ответ: x=-1;x=1 .
Возможные точки перегиба: x=0
Для нахождения возможных точек перегиба приравняем вторую производную к нулю и решим полученное уравнение.
6x=0
x=0:6
ответ: x=0 .
Точки разрыва: нет
Симметрия относительно оси ординат: нет
Функция f(x) называется четной, если f(-x)=f(x).
yx-y-x =
=x3-3x--x3-3-x =
=x3-3x--x3+3-x =
=x3-3x+x3-3x =
=2x3+-6x =
=2x3-6x
2x3-6x≠0
y-x≠yx
Симметрия относительно начала координат: функция нечетная, график симметричен относительно начала координат.
Функция f(x) называется нечетной, если f(-x)=-f(x).
yx+y-x =
=x3-3x+-x3-3-x =
=x3-3x-x3+3x =
=0
y-x=-yx
Относительные экстремумы:
Проходя через точку минимума, производная функции меняет знак с (-) на (+).
Относительный минимум 1;-2 .
Проходя через точку максимума. производная функции меняет знак с (+) на (-).
Относительный максимум -1;2 .
Множество значений функции: множество всех действительных чисел
Наименьшее значение: нет
Наибольшее значение: нет
Детальніше - на -
Покрокове пояснення:
выражением:
= 5 1/16 - 9/8 * ( 35/42 + 9/42)=
= 5 1/16 - 9/8 * 44/42 =
= 5 1/16 - 9/8 * 22/21 =
= 5 1/16 - (3*11)/(7*4)=
= 5 1/16 - 1 5/28 =
= 5 7/112 - 1 20/112=
= 3 99/112
по действиям:
1) 5/6 + 3/14 = [( 5*7) / ( 6*7)] + [(3*3)/(14*3)]=35/42 + 9/42 =
=44/42 = 22/21 = 1 1/21
2)1 1/8 * 1 1/21 = 9/8 * 22/21 = (3*11)/(4*7) = 33/28 = 1 5/28
3) 5 1/16 - 1 5/28 = 81/16 - 33/28 = [(81*7)/(16*7)] - [(33*4)/(28*4)] =
= 567/112 - 132/112= 435/112= 3 99/112
Відповідь:
Исследуем функцию, заданную формулой: yx=x3-3x
Область определения: множество всех действительных чисел
Первая производная: y'x=3x2-3
x3-3x' =
=x3'-3x' =
=3x2-3x' =
=3x2-3•1 =
=3x2-3
Вторая производная: y''x=6x
Вторая производная это производная от первой производной.
3x2-3' =
=3x2'-3' =
=3x2'-0 =
=3x2' =
=32x =
=3•2x =
=3•2x =
=6x
Точки пересечения с осью x : x=-3;x=0;x=3
Для нахождения точек пересечения с осью абсцисс приравняем функцию к нулю.
x3-3x=0
Решаем уравнение методом разложения на множители.
xx2-3=0
решение исходного уравнения разбивается на отдельные случаи.
Случай 1 .
x=0
Случай 2 .
x2-3=0
Перенесем известные величины в правую часть уравнения.
x2=3
ответ этого случая: x=-3;x=3 .
ответ: x=-3;x=0;x=3 .
Точки пересечения с осью y : y=0
Пусть x=0
y0=03-3•0=0
Вертикальные асимптоты: нет
Горизонтальные асимптоты: нет .
Наклонные асимптоты: нет .
yx стремится к бесконечности при x стремящемся к бесконечности.
yxx стремится к бесконечности при x стремящемся к бесконечности.
Критические точки: x=-1;x=1
Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.
3x2-3=0
3x2=3
x2=3:3
x2=1
ответ: x=-1;x=1 .
Возможные точки перегиба: x=0
Для нахождения возможных точек перегиба приравняем вторую производную к нулю и решим полученное уравнение.
6x=0
x=0:6
x=0
ответ: x=0 .
Точки разрыва: нет
Симметрия относительно оси ординат: нет
Функция f(x) называется четной, если f(-x)=f(x).
yx-y-x =
=x3-3x--x3-3-x =
=x3-3x--x3+3-x =
=x3-3x+x3-3x =
=2x3+-6x =
=2x3-6x
2x3-6x≠0
y-x≠yx
Симметрия относительно начала координат: функция нечетная, график симметричен относительно начала координат.
Функция f(x) называется нечетной, если f(-x)=-f(x).
yx+y-x =
=x3-3x+-x3-3-x =
=x3-3x+-x3-3-x =
=x3-3x-x3+3x =
=x3-3x-x3+3x =
=0
y-x=-yx
Относительные экстремумы:
Проходя через точку минимума, производная функции меняет знак с (-) на (+).
Относительный минимум 1;-2 .
Проходя через точку максимума. производная функции меняет знак с (+) на (-).
Относительный максимум -1;2 .
Множество значений функции: множество всех действительных чисел
Наименьшее значение: нет
Наибольшее значение: нет
Детальніше - на -
Покрокове пояснення: