Площадь квадрата равна квадраты его стороны, пусть сторона квадрата равна a, тогда a^2 = 36 см^2
a = 6 см.
Площадь серого многоугольника состоит из одного квадрата, четырёх прямоугольник и четырёх треугольников.
Площадь квадрата равна 36 см^2
Площадь одного прямоугольника равна 6 * (6/2) = 6 * 3 = 18 см^2. Так как одно сторона совпадает со стороной квадрата, а другая с половиной стороны квадрата. Значит площадь четырёх прямоугольников: 4 * 18 = 72 см^2.
Треугольнике прямоугольные, также они равнобедренные, катеты их равны половине стороны квадрата, то есть 6 : 2 = 3 см. Значит площадь одного треугольника:
a = 6 см.
Площадь серого многоугольника состоит из одного квадрата, четырёх прямоугольник и четырёх треугольников.
Площадь квадрата равна 36 см^2
Площадь одного прямоугольника равна 6 * (6/2) = 6 * 3 = 18 см^2. Так как одно сторона совпадает со стороной квадрата, а другая с половиной стороны квадрата. Значит площадь четырёх прямоугольников: 4 * 18 = 72 см^2.
Треугольнике прямоугольные, также они равнобедренные, катеты их равны половине стороны квадрата, то есть 6 : 2 = 3 см. Значит площадь одного треугольника:
(3 * 3) / 2 = 4.5 см^2
Откуда площадь четырёх треугольников:
4.5 * 4 = 18 см^2
Сложим все площади:
36 + 72 + 18 = 126 см^2
Ответ: S = 126 см^2
В решении.
Пошаговое объяснение:
Решить уравнения:
1) 11/12= 3/4 x - 1/9
↓
11/12 = 3х/4 - 1/9
Умножить все части уравнения на 36, чтобы избавиться от дробного выражения:
3 * 11 = 9 * 3х - 4 * 1
33 = 27х - 4
-27х = -4 - 33
-27х = -37
х = -37/-27 (деление)
х = 37/27 (дробь),
2) -2 1/5 - 3x = 2 1/4 x
↓
-11/5 - 3х = 9х/4
Умножить все части уравнения на 20, чтобы избавиться от дробного выражения:
4 * (-11) - 60х = 5 * 9х
-44 - 60х = 45х
-60х - 45х = 44
-105х = 44
х = 44/-105 (деление)
х = -44/105 (дробь).
Проверка путём подстановки вычисленных значений х в уравнения показала, что данные решения удовлетворяют данным уравнениям.