Если было поровну рыцарей и лжецов -значит их было четное количество. Когда первый из 2015 сказал: Когда я уеду, на острове станет поровну рыцарей и лжецов, он мог оказаться рыцарем, т.к. после его уезда оставалось четное кол-во человек (но мог быть и лжецом). Когда уезжал 2 человек и произносил эту фразу -он определенно был лжец, т.к. после его уезда оставалось 2013 человек-т.е. нечетное кол-во. Соответственно, каждый человек, который уезжал четным был лжецом. Выясним сколько их было: 2, 4, 6, , 2014 2014=2+(n-2)2 2012=(n-1)2 n-1=1006 n=1007 -лжецов было точно. Пройдемся от начала, с новой инфой, что лжецов было ≥1007.
1 случай. Если первый уезжающий -рыцарь, тогда из 2014 поровну рыцарей и лжецов, а также лжецов ≥1007, значит осталось 1007 рыцарей и 1007 лжецов. Тогда с учетом первого рыцаря на острове было: 1007+1=1008 рыцарей.
2.Случай. Если первый уезжающий -лжец. из 2014 человек лжецов>1007, а рыцарей <1007. Всего лжецов уже >1008 (из 2015 человек) 3ий уезжающий оставил после себя 2012 человек т.к. лжецов уже >1008, поровну уже ни при каком случае не получится. (т.к. чтобы из 2012 чел было поровну и л и р, их должно быть по 1006, из 2010 -1005 и меньше,) Таки образом, последний человек который был 2015 по счету -был рыцарем, так как после него осталось равное кол-во лжецов и рыцарей =0) итого : 2014 лжецов и 1 рыцарь.
Так как a,b,c - различные натуральные числа и а+b=7
то перебором (так как возможных вариантов немного) b=1; c^2=b-1=1-1=0, c=0 - не подходит b=2; c^2=b-1=2-1=1; c=1; a=7-b=7-1=6 (подходит) b=3; c^2=b-1=3-1=2; c - (не целое) не натуральное (не подходит) b=4; c^2=b-1=4-1=3; c - (не целое) не натуральное (не подходит) b=5; c^2=b-1=5-1=4; c=2; a=7-b=7-5=2; a=c (не подходит) b=6; c^2=b-1=6-1=5; c - (не целое) (не подходит) b=7 (и b>7) a<=0 - не натуральное (не подходит)
значит единственно возможный вариант a=6; b=2; c=1 сума всех возможных а состоит из одного слагаемого 6, значит сумма равна 6 ответ: 6
Когда первый из 2015 сказал: Когда я уеду, на острове станет поровну рыцарей и лжецов, он мог оказаться рыцарем, т.к. после его уезда оставалось четное кол-во человек (но мог быть и лжецом). Когда уезжал 2 человек и произносил эту фразу -он определенно был лжец, т.к. после его уезда оставалось 2013 человек-т.е. нечетное кол-во. Соответственно, каждый человек, который уезжал четным был лжецом. Выясним сколько их было:
2, 4, 6, , 2014
2014=2+(n-2)2
2012=(n-1)2
n-1=1006
n=1007 -лжецов было точно.
Пройдемся от начала, с новой инфой, что лжецов было ≥1007.
1 случай. Если первый уезжающий -рыцарь, тогда из 2014 поровну рыцарей и лжецов, а также лжецов ≥1007, значит осталось 1007 рыцарей и 1007 лжецов.
Тогда с учетом первого рыцаря на острове было: 1007+1=1008 рыцарей.
2.Случай. Если первый уезжающий -лжец. из 2014 человек лжецов>1007, а рыцарей <1007. Всего лжецов уже >1008 (из 2015 человек)
3ий уезжающий оставил после себя 2012 человек
т.к. лжецов уже >1008, поровну уже ни при каком случае не получится.
(т.к. чтобы из 2012 чел было поровну и л и р, их должно быть по 1006, из 2010 -1005 и меньше,)
Таки образом, последний человек который был 2015 по счету -был рыцарем, так как после него осталось равное кол-во лжецов и рыцарей =0)
итого : 2014 лжецов и 1 рыцарь.
то перебором (так как возможных вариантов немного)
b=1; c^2=b-1=1-1=0, c=0 - не подходит
b=2; c^2=b-1=2-1=1; c=1; a=7-b=7-1=6 (подходит)
b=3; c^2=b-1=3-1=2; c - (не целое) не натуральное (не подходит)
b=4; c^2=b-1=4-1=3; c - (не целое) не натуральное (не подходит)
b=5; c^2=b-1=5-1=4; c=2; a=7-b=7-5=2; a=c (не подходит)
b=6; c^2=b-1=6-1=5; c - (не целое) (не подходит)
b=7 (и b>7) a<=0 - не натуральное (не подходит)
значит единственно возможный вариант a=6; b=2; c=1
сума всех возможных а состоит из одного слагаемого 6, значит сумма равна 6
ответ: 6