В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lll38
lll38
02.01.2022 11:00 •  Математика

Найдите наибольшее значение функции y=x^3+8x^2+16x+23 на отрезке [-13; -3] ответ знаю: 23. но вот только с решением разобраться не могу, также если не сложно найти наименьшее значение в этом же примере.

Показать ответ
Ответ:
7ag
7ag
01.10.2020 20:13
1)сначала нужно найти производную
у=3х^2+16х+16
2)затем нули производной
3х^2+16х+16=0
D=64
VD=8
x1=-4
x2=-4/3
3)смотрим входят ли нули в интервал
x2=-4/3 не принадлежит [-13.-3]
4)определим значение функции на концах отрезка и в нулях ф-ии
у(-4)=-64+8*16-64+23=23 максимум ф-ии
у(-13)=-2197+8*169-16*13+23=-1030минимум ф-ии
у(-3)=-27+8*9-48+23=20
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота