В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
esrogalov
esrogalov
28.06.2022 08:54 •  Математика

Найдите точку максимума в функции y=(13-x)e^x+13.

Показать ответ
Ответ:
mnmnho57
mnmnho57
24.07.2020 13:28
y=(13-x)e^x+13
y'=(13-x)'e^x+(13-x)(e^x)'=-e^x+(13-x)e^x=e^x(-1+13-x)
=e^x(12-x).
y'=0 =\ \textgreater \ e^x(12-x)=0 =\ \textgreater \ x=12 - точка экстремума, т.к. e^x\ \textgreater \ 0. Определяем знаки производной:
 +           -
-------.------>    Значит, функция возрастает на (-∞;12) и убывает на (12;+∞).
       12            Поэтому 12 - точка максимума функции.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота