В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
даша3634
даша3634
11.05.2023 11:38 •  Математика

Найдите все значения а, при которых неравенство 3*sin^3 (x) + a*cos^2 (x) + 3*a^2 *sin(x) - a + 3 > = 0 выполняется для любых х.

Показать ответ
Ответ:
lalalypsik
lalalypsik
06.10.2020 14:21
3sin^3 x + a*(1 - sin^2 x) + 3a^2*sin x + (3-a) >= 0
3sin^3 x - asin^2 x + 3a^2*sin x + (a+3-a) >= 0
3sin^3 x - asin^2 x + 3a^2*sin x + 3 >= 0
Кубическое неравенство относительно sin x.
Как известно, sin x ∈ [-1; 1]. Если неравенство выполняется при любых x,
то оно выполняется при sin x = -1 и при sin x = 1:
3(-1) - a*1 + 3a^2(-1) + 3 = -3a^2 - a = -a(3a + 1) >= 0
a ∈ [-1/3; 0]
3*1 - a*1 + 3a^2*1 + 3 = 3a^2 - a + 6 >= 0 - это выполнено при любом а
ответ: a ∈ [-1/3; 0]
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота