Значение вероятности будем считать по теореме Муавра-Лапласа. Расссмотрим схему испытаний Бернулли с вероятностью успеха равно 0,1 (вероятность ненадёжной работы), число испытаний n=150. Матожидание числа успехов М=n*p=150*0.1=15. Дисперсия D=n*p*(1-p)=150*0.1*(1-0.1)=15/0.9=16.667. Число успехов mu=20. Р(mu>20)=P((mu-M)/√D)≥(20-0.1*150)/√15*0.9=1/√6.28*Интеграл от 20 до бесконечности exp(-x²/2)dx=0.5-Ф(1,361)=0,5-0,41309=0.087. Для случая выхода из строя ровно 20 в интеграле берём пределы от 20 до 21 и получаем Ф(1,633)-Ф(1,361)=0,44738-0,41309=0,034. Значение 1,633 получено как (21-0.1*150)/√(n*p*(1-p)).
1. Вычислим длину прямоугольника, если она в 2 раза короче ширины:
80 / 2 = 40 м.
2. Теперь можем рассчитать площадь и периметр. Площадь будет равна произведению длины и ширины, а периметр - удвоенной сумме длины и ширины:
Площадь = 40 * 80 = 3200 м2.
Периметр = 2 * (40 + 80) = 2 * 120 = 240 м.
3. Выразим полученную площадь в арах:
3200 м2 = 32 ар.
4. Теперь определим, чему равна сторона квадрата, если периметр равен 240 м, поделив его на 4:
240 / 4 = 60 м.
5. Наконец, вычислим площадь квадрата со стороной 60 м:
60 * 60 = 3600 м2.
6. Выразим полученную площадь в арах:
3600 м2 = 36 ар.
ответ: прямоугольник имеет площадь 32 ара, а периметр 240 м, а квадрат имеет площадь 36 ар.