найти уравнение прямой проходящей через фокус эллипса 16x^2+25y^2=400 параллельно той асимптоте гиперболы x^2/36-y^2/64=1, которая проходит через 2 и 4 квадранты
Нехай сторони прямокутника дорівнюють х см і у см. Знаючи, що діагональ дорівнює 13 см і використовуючи теорему Піфагора, складаємо перше рівняння: х² + у² = 169 Знаючи, що площа прямокутника дорівнює 60 см², складаємо друге рівняння: ху=60 Отримали систему рівнянь: {х² + у² = 169, {ху=60
Виражаємо з другого рівняння х через у (х=60/у) і підставляємо це значення у перше рівняння: (60/у)² + у² = 169 3600/у² + у² = 169
Множимо обидві частини рівняння на у², щоб позбутися знаменника (у≠0): 3600 + у⁴ = 169у² у⁴ - 169у² + 3600 = 0
Отримали біквадратне рівняння. Вводимо заміну: у² = t
трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.
Знаючи, що діагональ дорівнює 13 см і використовуючи теорему Піфагора, складаємо перше рівняння:
х² + у² = 169
Знаючи, що площа прямокутника дорівнює 60 см², складаємо друге рівняння:
ху=60
Отримали систему рівнянь:
{х² + у² = 169,
{ху=60
Виражаємо з другого рівняння х через у (х=60/у) і підставляємо це значення у перше рівняння:
(60/у)² + у² = 169
3600/у² + у² = 169
Множимо обидві частини рівняння на у², щоб позбутися знаменника (у≠0):
3600 + у⁴ = 169у²
у⁴ - 169у² + 3600 = 0
Отримали біквадратне рівняння.
Вводимо заміну: у² = t
t² - 169t + 3600 = 0
D = 28561-14400 = 14161
t₁ = (169+119)/2 = 144
t₂ = (169-119)/2 = 25
y² = 144
y₁ = -12 - не задовольняє умову задачі
у₂ = 12 х₂ = 60/12 = 5
у² = 25
у₃ = -5 - не задовольняє умову задачі
у₄ = 5 х₄ = 60/5 = 12
Відповідь. 5 см і 12 см дорівнюють сторони прямокутника.