В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Denair
Denair
14.03.2021 04:39 •  Математика

Найти значение производной в точке х0, X0= F(x)5x•cosx+2, x0= p/2

Показать ответ
Ответ:
OligCh
OligCh
17.06.2020 18:34

Вероятность события "монета выпала решкой ровно 10 раз" больше вероятности события "монета выпала решкой ровно 13 раз" в 14,3 раза.

Объяснение:

Определить, во сколько раз вероятность события "монета выпала решкой ровно 10 раз" больше вероятности события "монета выпала решкой ровно 13 раз".

1) Введем обозначения по условию:

Число бросков n = 16:

1-е событие "монета выпала решкой ровно 10 раз"  k = 10;

2-е событие "монета выпала решкой ровно 13 раз" k = 13.

Найти отношение вероятности первого события ко второму:

\displaystyle \frac {P(10)}{P(13)}.

Вероятностью наступления некоторого события называется отношение числа благоприятных исходов к числу всех возможных исходов.

2) При бросании монеты число всех исходов равно 2ⁿ.

В нашем случае число всех возможных исходов одной или другой стороны монеты при 16 бросках равно 2¹⁶.

Число сочетаний без повторений из n элементов по k - это количество , которыми можно выбрать k элементов из n без учета порядка.

\displaystyle C^{k} _{n} = \frac{n!}{k! (n-k)!}

3) Число благоприятных исходов в первом случае.

Число бросков n = 16

Число выпадений решки k = 10.

Число благоприятных исходов в первом случае равно числу сочетаний  из 16 по 10.

\displaystyle C^{k} _{n} = \frac{16!}{10! (16-10)!}= \frac{16!}{10! \cdot 6!}.

4) Вероятность события "монета выпала решкой ровно 10 раз".

\displaystyle P(10) = \frac{C^{10}_{16}}{2^{16}} = \frac{16!}{10! \cdot 6! \cdot 2^{16} } .

5) Число благоприятных исходов во втором случае.

Число бросков n = 16

Число выпадений решки k = 13.

Число благоприятных исходов во втором случае равно числу сочетаний  из 16 по 13.

\displaystyle C^{k} _{n} = \frac{16!}{13! (16-13)!}= \frac{16!}{13! \cdot 3!}.

6) Вероятность события "монета выпала решкой ровно 13 раз"

\displaystyle P(13) = \frac{C^{13}_{16}}{2^{16}} = \frac{16!}{13! \cdot 3! \cdot 2^{16} } .

7) Найдем,  во сколько раз вероятность первого события больше вероятности второго события.

\displaystyle \frac{P(10)}{P(13)} =\frac{C^{10}_{16}}{2^{n}} : \frac{C^{13}_{16}}{2^{n}} =\frac{C^{10}_{16}}{2^{n}} \cdot \frac{2^{n}}{C^{13}_{16}} =\frac{C^{10}_{16}}{C^{13}_{16}} .

\displaystyle \frac{P(10)}{P(13)} =\frac{16! \cdot 13! \cdot 3!}{10! \cdot 6! \cdot 16!} =\frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 3!}{10! \cdot 3! \cdot 4 \cdot 5 \cdot 6} =\\\\\\=\frac{11 \cdot 13}{10} = \frac{143}{10} =14,3

Вероятность события "монета выпала решкой ровно 10 раз" больше вероятности события "монета выпала решкой ровно 13 раз" в 14,3 раза.

0,0(0 оценок)
Ответ:
12VikaSmirnova34
12VikaSmirnova34
02.05.2022 14:26

36 км - расстояние между пунктом А и Б

Пошаговое объяснение:

Пусть от пункта А до пункта Б велосипедист ехал со скоростью  х км/час и за 3 часа он проехал расстояние (3 * х) км. Тогда  от пункта  Б  до пункта А его скорость = (х + 6) км/час. и за 2 часа он проехал 2 * (х + 6) км. Расстояние от пункта А до пункта Б = расстоянию от пункта Б до пункта А. Составим уравнение:

3х = 2 * (х + 6)

3х = 2х + 12

х = 12 (км/час) - скорость велосипедиста от пункта А до пункта Б

12 км/час * 3 час = 36 км расстояние между пунктом А и Б

(12 км/час + 6 км/час) * 2 =  18 км/час * 2 час = 36 км расстояние между пунктом Б и А - Решение верно.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота