Я думаю так: Если одну «восьмерку» получили по математике или физике 75 учеников, это значит, что 48+37-75=10 учеников получили «восемь» и по математике, и по физике (т.е. хотя бы по двум предметам). Аналогично 48+42-76=14 учеников получили «восемь» и по математике, и по русскому языку, 42+37-66=13 учеников получили «восемь» и по русскому языку, и по физике. Далее, так, как 4 ученика получили «восемь» по всем трем предметам, то 10-4=6 учеников получили «восемь» только по математике и по физике (только по двум предметам), 14-4=10 учеников получили «восемь» только по математике и по русскому языку, 13-4=9 учеников получили «восемь» только по русскому языку и по физике. Теперь найдем сколько учеников получили «восемь» только по математике, для этого отнимем от 48 тех, кто получил отметку по трем и двум предметам: 48-4-6-10=28 учеников. Аналогично найдем сколько учеников получили «восемь» только по физике: 37-4-6-9=18 учеников, только по русскому языку: 42-4-9-10=19 учеников. Отсюда, хотя бы одну «восемь» получили (т.е. те, кто получил по трем, двум и одному предмету) 4+6+9+10+28+18+19 = 94 ученика, только одну «восемь» (т.е. с одного предмета) получили : 28+18+19=65 учеников.
Рассмотрим три правила раскрытия скобок: как раскрывать скобки, если перед скобками стоит знак плюс, как раскрывать скобки, когда перед скобками стоит знак минус, и как раскрывать скобки, перед которыми стоит множитель.
1. Если перед скобками стоит знак «+», то знаки в скобках не меняются.
Например, 7+(8a-6b)=7+8a-6b;
18+(-5x+12y)=18-5x+12y.
2. Если перед скобками стоит знак «-«, знаки в скобках меняются на противоположные.
Например, 5a-(9b-7c)=5a-9b+7c;
9-(-4y+2z)=9+4y-2z.
3. Если перед скобками стоит множитель, надо этот множитель умножить на каждое слагаемое, стоящее в скобках.
Если одну «восьмерку» получили по математике
или физике 75 учеников, это значит, что 48+37-75=10 учеников
получили «восемь» и по математике, и по физике
(т.е. хотя бы по двум предметам).
Аналогично 48+42-76=14 учеников получили «восемь»
и по математике, и по русскому языку, 42+37-66=13 учеников
получили «восемь» и по русскому языку, и по физике.
Далее, так, как 4 ученика получили «восемь» по всем
трем предметам, то 10-4=6 учеников получили «восемь»
только по математике и по физике (только по двум предметам),
14-4=10 учеников получили «восемь» только по математике
и по русскому языку, 13-4=9 учеников получили
«восемь» только по русскому языку
и по физике. Теперь найдем сколько учеников получили
«восемь» только по математике, для этого отнимем
от 48 тех, кто получил отметку по трем и двум
предметам: 48-4-6-10=28 учеников. Аналогично найдем
сколько учеников получили «восемь» только
по физике: 37-4-6-9=18 учеников, только
по русскому языку: 42-4-9-10=19 учеников.
Отсюда, хотя бы одну «восемь» получили
(т.е. те, кто получил по трем, двум и одному предмету)
4+6+9+10+28+18+19 = 94 ученика, только одну «восемь»
(т.е. с одного предмета) получили : 28+18+19=65 учеников.
Рассмотрим три правила раскрытия скобок: как раскрывать скобки, если перед скобками стоит знак плюс, как раскрывать скобки, когда перед скобками стоит знак минус, и как раскрывать скобки, перед которыми стоит множитель.
1. Если перед скобками стоит знак «+», то знаки в скобках не меняются.
Например, 7+(8a-6b)=7+8a-6b;
18+(-5x+12y)=18-5x+12y.
2. Если перед скобками стоит знак «-«, знаки в скобках меняются на противоположные.
Например, 5a-(9b-7c)=5a-9b+7c;
9-(-4y+2z)=9+4y-2z.
3. Если перед скобками стоит множитель, надо этот множитель умножить на каждое слагаемое, стоящее в скобках.
Например, 4(3a+7b-5c)=12a+28b-20c;
-10(4.56x-2,3y+5)=-45,6x+23y-50.