1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Чертеж беру ваш.
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Доказано.
При делении числа "а" на 9 получили остаток 5
Значит число а можно записать как
а=9к+5
А теперь воспользуемся свойством делимости:
"Если и уменьшаемое, и вычитаемое делятся на некоторое число, то и разность делится на это число"
запишем нашу разность
заметим, что число b тоже можно разделить на 9 с остатком
значит запишем его как
b=9n+x
и теперь наша разность будет выглядеть так
a-b=9m(9k+5)-(9n+x)=9m9(k-n)+(5-x)=9m
чтобы это равенство выполнялось x=5
И тогда число b должно делиться на 9 с остатком 5
приведем пример:
50:9= 5*9+5
41:9=4*9+5
50-41=9 и оно кратно 9
221:9=24*9+5
140:9=15*5+5
221-140=81
и оно кратно 9