1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
Пошаговое объяснение:
Для решения этой задачи используем формулы арифметической прогрессии.
а₁=5 [в первый день 5 капель]
[день, в который нужно выпить 40 капель]
d=5 [разность арифметической прогрессии, т.к. каждый день дозировка увеличивается на одну и ту же величину - 5 капель]
На восьмой день дозировка составит 40 капель.
По формуле суммы n первых членов арифметической прогрессии найдм сколько всего капель нужно выпить больному за 8 дней.
180 капель должен выпить больной за первые 8 дней лечения.
В последний период лечения больной должен уменьшать дозировку каждый день на 5 капель, и с дозировки в 40 капель дойти до 5 капель.
На это ему понадобиться 8 дней (также, как и в первый период лечения).
Суммарное количество капель, которые должен выпить больной за эти 8 дней, составит 180.
В середине лечения больной должен три дня подряд пить по 40 капель. Два раза по 40 капель мы уже учли. Поэтому к общей сумме добавим только 40.
180+180+40 = 400 (капель) - должен выпить больной за весь период лечения.
В одном пузырьке содержится 200 капель лекарства. Значит больному нужно купить 400:200 = 2 пузырька лекарства.
ответ: 2 пузырька.
1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
Тогда его объем равен:
V=piR^2*BB1=4*pi*корень из2