Чтобы в третьем ящике была максимальная масса, надо, чтобы впервых двух была минимально возможная. По условию она не может быть меньше 20 кг, причем, масса не одинаковая.
20 * 3 = 60 (кг) находилось бы в ящиках, если бы во всех трех была масса, равная 20 кг
69 - 60 = 9 (кг) находится дополнительно в ящиках, так как по условию в каждом больше 20 кг
Наименьшее целое число, которое можно добавить в один из ящиков - это 1 кг, тогда во второй нужно добавить 2 кг.
1 + 2 = 3 (кг) нужно добавить в первый и второй ящик вместе
9 - 3 = 6 (кг) --- добавляем в третий ящик
20 + 6 = 26 (кг) максимально возможная масса яблок в третьем ящике.
всего в 3-х ящ 69 кг
в каждом --- ? кг, но разная ,> 20 и <30
в 3-ем макс --- ? кг
Решение.
Чтобы в третьем ящике была максимальная масса, надо, чтобы впервых двух была минимально возможная. По условию она не может быть меньше 20 кг, причем, масса не одинаковая.
20 * 3 = 60 (кг) находилось бы в ящиках, если бы во всех трех была масса, равная 20 кг
69 - 60 = 9 (кг) находится дополнительно в ящиках, так как по условию в каждом больше 20 кг
Наименьшее целое число, которое можно добавить в один из ящиков - это 1 кг, тогда во второй нужно добавить 2 кг.
1 + 2 = 3 (кг) нужно добавить в первый и второй ящик вместе
9 - 3 = 6 (кг) --- добавляем в третий ящик
20 + 6 = 26 (кг) максимально возможная масса яблок в третьем ящике.
ответ: 26 кг
Представим в виде десятичной дроби. Для этого числитель делим на знаменатель.
1) 5/7 = 5 ÷ 7 = 0,7142857143;
2) -8/15 = -8 ÷ 15 = -0,5333333333;
3) 8/9 = 8 ÷ 9 = 0,8888888889;
4) -2/21 = -2 ÷ 21 = -0,0952380952;
5) 5/22 = 5 ÷ 22 = 0,2272727273;
6) 4/45 = 4 ÷ 45 = 0,0888888889;
7) 1 4/11 = (1 × 11 + 4)/11 = 15/11 = 15 ÷ 11 = 1,3636363636;
8) 2 1/16 = (2 × 16 + 1)/16 = 33/16 = 33 ÷ 16 = 2,0625;
9) -1 2/3 = -(1 × 3 + 2)/3 = -5/3 = -5 ÷ 3 = -1,6666;
10) -1 1/27 = -(1 × 27 + 1)/27 = -28/27 = -28 ÷ 27 = -1,037037037;
11) 5 2/3 = (5 × 3 + 2)/3 = 17/3 = 17 ÷ 3 = 5,6666;
12) 4 5/6 = (4 × 6 + 5)/6 = 29/6 = 29 ÷ 6 = 4,8333333333;
Пошаговое объяснение: