ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
P AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SPAM
SAM
AM
AMP
AMSP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AMSP
ASP
SP
SPM
SPAM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SPAM
SAM
AM
AMP
AMSP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AMSP
ASP
SP
SPM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
Must Waste More Time...
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал