Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий; другими словами, если {\displaystyle A_{i}A_{j}=\varnothing }A_{i}A_{j}=\varnothing при {\displaystyle i\neq j}i\neq j, то {\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}{\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}.
В случае если элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.
Вероятностная мера может быть определена не для всех подмножеств множества {\displaystyle X}X. Предполагается, что она определена на некоторой сигма-алгебре {\displaystyle \Omega }\Omega подмножеств[6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность {\displaystyle (X,\Omega ,P)}(X,\Omega ,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным Свойства вероятности
Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности.
1) вероятность невозможного события (пустого множества {\displaystyle \varnothing }\varnothing ) равна нулю:
Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю.
2) если событие A включается («входит») в событие B, то есть {\displaystyle A\subset B}A\subset B, то есть наступление события A влечёт также наступление события B, то:
Это следует из неотрицательности и аддитивности вероятностной меры, так как событие {\displaystyle B}B, возможно, «содержит» кроме события {\displaystyle A}A ещё какие-то другие события, несовместные с {\displaystyle A}A.
3) вероятность каждого события {\displaystyle A}A находится от 0 до 1, то есть удовлетворяет неравенствам:
Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в {\displaystyle X}X, а для {\displaystyle X}X аксиоматически предполагается {\displaystyle \mathbf {P} \{X\}=1}{\mathbf {P}}\{X\}=1.
4) вероятность наступления события {\displaystyle B\setminus A}B\setminus A, где {\displaystyle A\subset B}A\subset B, заключающегося в наступлении события {\displaystyle B}B при одновременном ненаступлении события {\displaystyle A}A, равна:
Это следует из аддитивности вероятности для несовместных событий и из того, что события {\displaystyle A}A и {\displaystyle B\setminus A}B\setminus A являются несовместными по условию, а их сумма равна событию {\displaystyle B}B.
Это следует из предыдущего свойства, если в качестве множества {\displaystyle B}B использовать всё и учесть, что {\displaystyle \mathbf {P} \{X\}=1}{\mathbf {P}}\{X\}=1.
6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий {\displaystyle A}A и {\displaystyle B}B равна:
Добуток двох множників один з яких дорівнює 0, дорівнює 0, значить добуток коренів двох рівнянь дорівнює 0.
3. Чому дорівнює 5х, якщо 2(х - 5)+Зх = 15?
2х-10+3х=15
5х=25
5. Яке з наведених рівнянь має найбільший корінь? Напишіть розв′язок
А) 7(х-2) = х-2;
7х-14=х-2
7х-х=14-2
6х=12
х=2
Б) 6х-3 = х-1,5
6х-х=3-1,5
5х=1,5
х=0,3
В) 11х - 5 = 10(х-4)
11х-5=10х-40
11х-10х=-40+5
Х=-35
Г) 4(х+0,5) = х-0,7
4х+2=х-0,7
4х-х=-2-0,7
3х=-2,7
х=-0,9
-35 -0,9 0,3 2
Найбільший корінь А) х=2
6. У трьох рядах 100 кущів смородини. У другому ряду кущів смо¬родини в 3 рази більше, ніж у першому, а в третьому — на 5 ку¬щів менше, ніж у першому. Скільки кущів смородини в кожно¬му з рядів? якщо через х позначено число кущів у першому ряду?Напишіть розв′язок
8. В одному ящику було в 7 разів більше апельсинів, ніж у другому. Коли з першого ящика взяли 38 апельсинів, а з другого — 14, то в другому залишилося на 78 апельсинів менше, ніж у першому. Скільки апельсинів було в кожному ящику спочатку?
Нехай у другому ящику х апельсинів, тоді у першому 7х апельсинів. З першого ящика взяли 38 апельсинів 7х- 38, а з другого 14,тобто х-14. В другому ящику на 78 апельсинів менше ніж в першому 7х-38-78=х-14.
7х-38-78=х-14
7х-х=38+78-142
6х=102
х= 17
В другому ящику було 17 апельсинів, у першому було 17*7=119 апельсинів.
Відповідь: у першому ящику 119 апельсинів, у другому ящику 17 апельсинів.
{
Вероятностью (вероятностной мерой) называется мера (числовая функция) {\displaystyle \mathbf {P} }\mathbf {P} , заданная на множестве событий, обладающая следующими свойствами:
Неотрицательность: {\displaystyle \forall A\subset X\colon \mathbf {P} (A)\geqslant 0}\forall A\subset X\colon {\mathbf P}(A)\geqslant 0,
Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий; другими словами, если {\displaystyle A_{i}A_{j}=\varnothing }A_{i}A_{j}=\varnothing при {\displaystyle i\neq j}i\neq j, то {\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}{\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}.
Конечность (ограниченность единицей): {\displaystyle \mathbf {P} (X)=1}{\mathbf P}(X)=1,
В случае если элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.
Вероятностная мера может быть определена не для всех подмножеств множества {\displaystyle X}X. Предполагается, что она определена на некоторой сигма-алгебре {\displaystyle \Omega }\Omega подмножеств[6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность {\displaystyle (X,\Omega ,P)}(X,\Omega ,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным Свойства вероятности
Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности.
1) вероятность невозможного события (пустого множества {\displaystyle \varnothing }\varnothing ) равна нулю:
{\displaystyle \mathbf {P} \{\varnothing \}=0;}{\mathbf {P}}\{\varnothing \}=0;
Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю.
2) если событие A включается («входит») в событие B, то есть {\displaystyle A\subset B}A\subset B, то есть наступление события A влечёт также наступление события B, то:
{\displaystyle \mathbf {P} \{A\}\leqslant \mathbf {P} \{B\};}{\mathbf {P}}\{A\}\leqslant {\mathbf {P}}\{B\};
Это следует из неотрицательности и аддитивности вероятностной меры, так как событие {\displaystyle B}B, возможно, «содержит» кроме события {\displaystyle A}A ещё какие-то другие события, несовместные с {\displaystyle A}A.
3) вероятность каждого события {\displaystyle A}A находится от 0 до 1, то есть удовлетворяет неравенствам:
{\displaystyle 0\leqslant \mathbf {P} \{A\}\leqslant 1;}0\leqslant {\mathbf {P}}\{A\}\leqslant 1;
Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в {\displaystyle X}X, а для {\displaystyle X}X аксиоматически предполагается {\displaystyle \mathbf {P} \{X\}=1}{\mathbf {P}}\{X\}=1.
4) вероятность наступления события {\displaystyle B\setminus A}B\setminus A, где {\displaystyle A\subset B}A\subset B, заключающегося в наступлении события {\displaystyle B}B при одновременном ненаступлении события {\displaystyle A}A, равна:
{\displaystyle \mathbf {P} \{B\setminus A\}=\mathbf {P} \{B\}-\mathbf {P} \{A\};}{\mathbf {P}}\{B\setminus A\}={\mathbf {P}}\{B\}-{\mathbf {P}}\{A\};
Это следует из аддитивности вероятности для несовместных событий и из того, что события {\displaystyle A}A и {\displaystyle B\setminus A}B\setminus A являются несовместными по условию, а их сумма равна событию {\displaystyle B}B.
5) вероятность события {\displaystyle {\bar {A}}}{\bar {A}}, противоположного событию {\displaystyle A}A, равна:
{\displaystyle \mathbf {P} \{{\bar {A}}\}=1-\mathbf {P} \{A\};}{\mathbf {P}}\{{\bar {A}}\}=1-{\mathbf {P}}\{A\};
Это следует из предыдущего свойства, если в качестве множества {\displaystyle B}B использовать всё и учесть, что {\displaystyle \mathbf {P} \{X\}=1}{\mathbf {P}}\{X\}=1.
6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий {\displaystyle A}A и {\displaystyle B}B равна:
{
1. Знайдіть корінь рівняння
7х -30 = 24-х
8х=54
Х=54/8
х=6,75
2. Знайдіть суму коренів рівнянь
5х+10 = 15х+40
-10х=30
х=-30/10
х=-3
2(-5х+10) = 80
-10х+20=80
-10х=60
х=-60/10
х=-6
-3+(-6)=-9
3. Знайдіть добуток коренів рівнянь
5х+6 = 6 - 5х
5х+5х=6-6
10х=0
х=0
0,13(9,8х+5,4)+1,2(4,5х+і) = 15.
Добуток двох множників один з яких дорівнює 0, дорівнює 0, значить добуток коренів двох рівнянь дорівнює 0.
3. Чому дорівнює 5х, якщо 2(х - 5)+Зх = 15?
2х-10+3х=15
5х=25
5. Яке з наведених рівнянь має найбільший корінь? Напишіть розв′язок
А) 7(х-2) = х-2;
7х-14=х-2
7х-х=14-2
6х=12
х=2
Б) 6х-3 = х-1,5
6х-х=3-1,5
5х=1,5
х=0,3
В) 11х - 5 = 10(х-4)
11х-5=10х-40
11х-10х=-40+5
Х=-35
Г) 4(х+0,5) = х-0,7
4х+2=х-0,7
4х-х=-2-0,7
3х=-2,7
х=-0,9
-35 -0,9 0,3 2
Найбільший корінь А) х=2
6. У трьох рядах 100 кущів смородини. У другому ряду кущів смо¬родини в 3 рази більше, ніж у першому, а в третьому — на 5 ку¬щів менше, ніж у першому. Скільки кущів смородини в кожно¬му з рядів? якщо через х позначено число кущів у першому ряду?Напишіть розв′язок
В) х+х-5+х:3 = 100
2х+ х/3=100+5
2х*3+(х/3)*3=105*3
6х+х=315
х=315/7
х=45
Достатній рівень навчальних досягнень
7. Розв'яжіть рівняння 9 (Зх - 2) - 6 = 5(4х -1)+2.
27х-18-6=20х-5+2
27х-20х=-5+2+18+6
7х=21
х=3
8. В одному ящику було в 7 разів більше апельсинів, ніж у другому. Коли з першого ящика взяли 38 апельсинів, а з другого — 14, то в другому залишилося на 78 апельсинів менше, ніж у першому. Скільки апельсинів було в кожному ящику спочатку?
Нехай у другому ящику х апельсинів, тоді у першому 7х апельсинів. З першого ящика взяли 38 апельсинів 7х- 38, а з другого 14,тобто х-14. В другому ящику на 78 апельсинів менше ніж в першому 7х-38-78=х-14.
7х-38-78=х-14
7х-х=38+78-142
6х=102
х= 17
В другому ящику було 17 апельсинів, у першому було 17*7=119 апельсинів.
Відповідь: у першому ящику 119 апельсинів, у другому ящику 17 апельсинів.
Високий рівень навчальних досягнень
9. Розв'яжіть рівняння
6+(|0,4x-7,5|):0,7= 7
6*0,7+(|0,4x-7,5|):0,7*0,7=7*0,7
4,2+(|0,4x-7,5|)=4,9
(|0,4x-7,5|=4,9-4,2
|0,4x-7,5|=0,7
0,4x=0,7+7,5
0,4х=8,2
Х1= 20,5
0,4x-7,5=-0,7
0,4х=7,5-0,7
0,4х=6,8
Х2=17