Пишутся одно за другим подряд все числа натурального ряда 123456789101112131415... Одна цифра занимает одно место. Какая цифра будет написана на 234 месте?
а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x)
2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x)
3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0
1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2
ответ: F(x)=x^3+2x^2+2
4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36
В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Дробь несократимая , значит ее числитель и знаменатель взаимно простые числа. Знаменатели меньше 77 ⇒ разложим число 77 на множители: 77 = 7 × 11 ⇒ знаменатели дробей 7 и 11. Пусть числитель первой дроби х , второй дроби у.
Если нужна просто сумма (х+у) , то возникает проблема - уравнение одно, а переменных две. ⇒ Метод подбора. Выразим из уравнения у : у= (58 - 11х )/7 Учтем: х < 7 , у < 11 , если дроби правильные х , у ∈ N - натуральные числа при х = 1 ⇒ у = (58-11*1)/7 = 47/7 - не является натуральным числом при х = 2 ⇒ у= (58 -11*2)/7 = 36/7 -∉N при х = 3 ⇒ у = (58 - 33)/7 = 25/7 - ∉N при х = 4 ⇒ у= (58 - 44) /7 = 14/7 = 2 удовл. условию ⇒ х+у= 4+2 = 6 при х= 5 ⇒ у= (58-55)/7= 3/7 - ∉N при х = 6 ⇒ у= (58-66)/7 = -8 - ∉N
Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x)
б) F'(x)=3*4*x^3-1/x=12*x^3-1/x
Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x)
2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x
След. F'(x)=f(x)
б) F(x)=3*e^x
Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x)
3) F(x)=x^3+2x^2+C,
т. к. (x^3)'=3x^2
(2x^2)'=2*2x=4x
C'=0
1. f(x)=3x^2+4x
След. , F'(x)=f(x)
2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство
5=3+С
С=2
ответ: F(x)=x^3+2x^2+2
4) у=x^2
у=9
x^2=9
х1=-3
х2=3
Границы интегрирования: -3 и 3
Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х
Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54
S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9
Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36
В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Знаменатели меньше 77 ⇒ разложим число 77 на множители:
77 = 7 × 11 ⇒ знаменатели дробей 7 и 11.
Пусть числитель первой дроби х , второй дроби у.
х/7 + у/11 = 58/77
(11х+7у)/ 77 = 58/77
11х +7у = 58
Следовательно сумма числителей( c одинаковыми знаменателями)
этих дробей = 58 .
Если нужна просто сумма (х+у) , то возникает проблема - уравнение одно, а переменных две. ⇒ Метод подбора.
Выразим из уравнения у :
у= (58 - 11х )/7
Учтем:
х < 7 , у < 11 , если дроби правильные
х , у ∈ N - натуральные числа
при х = 1 ⇒ у = (58-11*1)/7 = 47/7 - не является натуральным числом
при х = 2 ⇒ у= (58 -11*2)/7 = 36/7 -∉N
при х = 3 ⇒ у = (58 - 33)/7 = 25/7 - ∉N
при х = 4 ⇒ у= (58 - 44) /7 = 14/7 = 2 удовл. условию ⇒ х+у= 4+2 = 6
при х= 5 ⇒ у= (58-55)/7= 3/7 - ∉N
при х = 6 ⇒ у= (58-66)/7 = -8 - ∉N