По окружности выписано 10 чисел, их сумма равна 100. известно, что сумма любой тройки чисел, стоящих подряд, не меньше 29. укажите такое наименьшее число a, что в любом таком наборе чисел каждое из чисел не превышает a.
ответ: 13. Обозначим за X наибольшее из чисел, стоящих по окружности. Оставшиеся числа разобьем на 3 тройки подряд идущих чисел. Сумма чисел в каждой такой тройке по условию не меньше 29. Поскольку сумма всех 10 чисел равна 100, X не больше, чем 100-3*29=13.
Обозначим за X наибольшее из чисел, стоящих по окружности. Оставшиеся числа разобьем на 3 тройки подряд идущих чисел. Сумма чисел в каждой такой тройке по условию не меньше 29. Поскольку сумма всех 10 чисел равна 100, X не больше, чем 100-3*29=13.