Свойство касательной и секущей: если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной равен произведению отрезка секущей и ее внешней части.
То есть:
МХ² = МВ · МА
Подставим значения МХ = 2 :
4 = МВ · МА
2. Рассмотрим Окр.О.
МВА - секущая;
СDX - секущая.
Свойство двух секущих: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть.
МА · МВ = MD · MC
MA · MB = 4 (п.1)
⇒ MD · MC = 4 (1)
3. МС = CD (по условию)
⇒ MD = 2CD
Заменим в выражении (1) MD на 2CD; MC на CD и получим равенство:
1)
3х-3<х-3 5х+15>2х+3
2х<0 3х>-12
х<0 х>-4
Потом чертишь числовую прямую на которой отмечаешь точку 0 и -4
ответ:х принадлежит (-4;0)
2)
{ 2(y-2) >= 3y+1
{ 5(y+1) <= 4y+3
Раскрываем скобки
{ 2y - 4 >= 3y + 1
{ 5y + 5 <= 4y + 3
Упрощаем
{ y <= -5
{ y <= -2
ответ: y = (-oo; -5]
3)
{ 3(2y-3) <= y+6
{ 4(3y+1) >= 5y-10
Раскрываем скобки
{ 6y - 9 <= y + 6
{ 12y + 4 >= 5y - 10
Упрощаем
{ 5y <= 15; y <= 3
{ 7y >= -14; y >= -2
ответ: y = [-2; 3]
4)
{ 2(3x+2) > 5(x-1)
{ 7(x+2) < 3(2x+3)
Раскрываем скобки
{ 6x + 4 > 5x - 5
{ 7x + 14 < 6x + 9
Упрощаем
{ x > -9
{ x < -5
ответ: x = (-9; -5)
Отрезок секущей СD равен √2 (ед).
Пошаговое объяснение:
Требуется найти отрезок секущей CD.
Дано: Окр.О ∩ Окр.К в точках А и В.
МСD - секущая;
МХ = 2 - касательная;
МС = CD.
Найти: CD.
1. Рассмотрим Окр.К
МХ - касательная;
МВА - секущая.
Свойство касательной и секущей: если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной равен произведению отрезка секущей и ее внешней части.То есть:
МХ² = МВ · МА
Подставим значения МХ = 2 :
4 = МВ · МА
2. Рассмотрим Окр.О.
МВА - секущая;
СDX - секущая.
Свойство двух секущих: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть.МА · МВ = MD · MC
MA · MB = 4 (п.1)
⇒ MD · MC = 4 (1)
3. МС = CD (по условию)
⇒ MD = 2CD
Заменим в выражении (1) MD на 2CD; MC на CD и получим равенство:
2CD · CD = 4
CD² = 2
CD = √2 (ед)
Отрезок секущей СD равен √2 (ед).