Нули функции - это такое значение х, при котором функция y=f(x) равна нулю (то есть график функции пересекается с осью Х) . Для того, чтобы найти нули функции, надо функцию приравнять к нулю. Например, дана функция f(x) = х2 – 4 (икс в квадрате минус четыре) Приравниваем к нулю: х2 – 4 = 0 А теперь решаем как квадратное уравнение, находим х (первое) = - 2, х (второе) = 2 При этих значениях х функция y=f(x) = 0
Это можно сделать и графически. Просто построить функцию по точкам и начертить, точки пересечения графика с осью Х и будут нулями функции.
в самую первую клетку (сверху слева) нужно поставить 2 монеты, а в нижнюю правую - 16
теперь в верхней строке прописываем числа дальше, прибавляя по единице
то есть в итоге должна получиться вот такая таблица
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14
8 9 10 11 12 13 14 15
9 10 11 12 13 14 15 16
считаем самую большую сумму и получаем ответ
больше ответов нет, т.к при другом раскладе получить 16 нельзя
Пошаговое объяснение:
На каждую клетку шахматной доски положили монеты, при этом если клетки соседние по стороне, то количества монет на них отличаются на 1. На одной клетке лежит 2 монеты, на другой — 16 монет. Посчитали суммы монет в восьми столбцах, и взяли среди восьми полученных сумм наименьшую. Напишите через пробел все варианты, какие могли получиться
Для того, чтобы найти нули функции, надо функцию приравнять к нулю.
Например, дана функция f(x) = х2 – 4 (икс в квадрате минус четыре)
Приравниваем к нулю:
х2 – 4 = 0
А теперь решаем как квадратное уравнение, находим х (первое) = - 2, х (второе) = 2
При этих значениях х функция y=f(x) = 0
Это можно сделать и графически. Просто построить функцию по точкам и начертить, точки пересечения графика с осью Х и будут нулями функции.
Посмотрите еще здесь:
в самую первую клетку (сверху слева) нужно поставить 2 монеты, а в нижнюю правую - 16
теперь в верхней строке прописываем числа дальше, прибавляя по единице
то есть в итоге должна получиться вот такая таблица
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14
8 9 10 11 12 13 14 15
9 10 11 12 13 14 15 16
считаем самую большую сумму и получаем ответ
больше ответов нет, т.к при другом раскладе получить 16 нельзя
Пошаговое объяснение:
На каждую клетку шахматной доски положили монеты, при этом если клетки соседние по стороне, то количества монет на них отличаются на 1. На одной клетке лежит 2 монеты, на другой — 16 монет. Посчитали суммы монет в восьми столбцах, и взяли среди восьми полученных сумм наименьшую. Напишите через пробел все варианты, какие могли получиться