В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Anna977497
Anna977497
17.09.2020 21:15 •  Математика

Постройте окружности, расстояние между центрами которых меньше суммы их радиусов. проведите общие касательные с этими двумя окружностями

Показать ответ
Ответ:
barslkbarslk
barslkbarslk
13.02.2021 17:30

ответ: 43

Пошаговое объяснение:

p^3 + 4p^2 + 4p = p(p+2)^2

Пусть p нечетно, то есть p отлично от двух, тогда p и p+2 - взаимнопростые.

У простого числа p два делителя: p и 1, тогда поскольку 1 единственный общий делитель с p+2 или (p+2)^2, то если (p+2)^2 имеет n делителей:

d1=1,d2,d3,...,dn = (p+2)^2, то число p(p+2)^2 имеет делители:

d1=1, d2, d3,..., dn = (p+2)^2, pd1=p, pd2, pd3,..., pdn = p(p+2)^2 - имеет 2n делителей, тогда (p+2)^2 имеет ровно 30/2 =  15 делителей.

Пусть: p1, p2, p3,..., pk - простые делители числа (p+2)^2 в произвольном порядке, а поскольку (p+2)^2 - полный квадрат, то каждое простое число из множества p1, p2, p3,..., pk встречаются четное число раз в разложении числа (p+2)^2 на простые множители.

Пусть каждое из чисел p1, p2, p3,..., pk встречается :

2n1, 2n2, 2n3,..., 2nk  раз cоответственно, тогда из комбинаторных соображений общее число делителей числа (p+2)^2 равно: (у числа p+2 они встречаются n1,n2,n3,..., nk раз)

(2n1 + 1)(2n2+1)(2n3 + 1)...(2nk + 1) = 15 = 5*3

5*3 имеет 4 положительных делителя: 1,3,5,15. 1 не подходит, ибо                2ni + 1 >=3

То есть имеем два варианта. У числа (p+2)^2 только 2 простых делителя, каждый из которых встречается n1 и n2 раза:

2n1 + 1 = 3

n1 = 1

2n2 + 1 = 5

n2 = 2

Иначе говоря:

p+2 = p1*p2^2

Или второй вариант:

у числа (p+2)  один простой делитель, что встречается n1 раз :

2n1 +1 = 15

n1 = 7

p+2 = p1^7

Рассмотрим первый случай:

p+2 = p1*p2^2

p = p1*p2^2 - 2

Минимально возможные нечетные p1 и p2: p1 = 3; p2 = 5.

Нетрудно заметить, что 5*3^2 - 2 = 43 - простое, а значит

p = 5*3^2 - 2 = 43 - минимальное нечетное простое число удовлетворяющее условию при данном варианте.

Второй случай рассматривать нет смысла, ибо :

p = p1^7 - 2 >= 3^7 - 2 > 43

Осталось проверить тривиальный случай p = 2

p(p+2)^2 = 2*4^2 = 2^5 - имеет 6 делителей.

Таким образом, наименьшее простое число p такое, что p^3+4p^2+4p имеет ровно 30 положительных делителей это 43.

0,0(0 оценок)
Ответ:
омега75
омега75
25.01.2020 08:42

Воспользуемся методом, позволяющим находить в разложении многочлена на скобки выражения вида x^2-a. Если a>0, это сразу дает два решения \pm \sqrt{a}, если a<0, действительные корни эта скобка не дает, но по любому степень многочлена будет понижена на 2. Кстати, решения вида  \pm \lambda я называю парными; название мне кажется оправданным. Легко доказать, что многочлен P(x) имеет парные корни \pm\lambda тогда и только тогда, когда они обращают в ноль по отдельности сумму четных степеней и сумму нечетных степеней. Это следует из того, что сумма четных степеней равна \frac {P(\lambda)+P(-\lambda)}{2}, а сумма нечетных равна \frac{P(\lambda)-P(-\lambda)}{2}.

Кстати, это утверждение будет работать и для нулевого корня, если считать, что ноль является парным корнем, в том случае, когда он является кратным.

1) Разбиваем на четные и нечетные степени: x^6+2x^4-5x^2-6=t^3+2t^2-5t-6=0\ \ (t=x^2);

-2x^5+2x^3+4x=-2x(t^2-t-2)=-2x(t-2)(t+1)=0;\ t_1=2; t_2=-1;

найденные t удовлетворяют и первому уравнению, поэтому оно принимает вид (t-2)(t+1)(t+3)=0, а поскольку исходное уравнение может быть получено в виде суммы этих двух, получаем

(t-2)(t+1)(t+3)-2x(t-2)(t+1)=0; (t-2)(t+1)(t-2x+3)=0; (x²-2)(x²+1)(x²-2x+3)=0.

ответ: \pm\sqrt{2}.

2)  t³+6t²+11t+6=0; -2x(t^2+3t+2)=-2x(t+1)(t+2)=0;

t³+6t²+11t+6=(t+1)(t+2)(t+3); все уравнение принимает вид

(t+1)(t+2)(t+3)-2x(t+1)(t+2)=(t+1)(t+2)(t-2x+3)=(x²+1)(x²+2)(x²-2x+3)=0.

ответ: решений нет.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота