Нужно найти тот пример, в котором если подставить любое удобное число и 0 в место х (я же использую 1, -1 и 0, но не всегда - поймете почему в объяснение) , то будет НЕ правильно и работает это методом вычисления и ИНОГДА (если трудно или подобное) метод исключения
1. х^2+6x+12>0
Подставляем:
х=1
1)1*1+6*1+12>0 - 1+6+12=19 - 19>0
2)-1*(-1)+6*(-1)+12>0 - 1+(-6)+12=7 7>0
3)0*0+6*0+12>0 - 0+0+12=12 12>0
Проверка: (не требует)
x=10
1)10*10+6*10+12<0 - 100+60+12=172 - 172>0
2)-10*(-10)+6*(-10)+12<0 - 100+(-60)+12=52 - 52>0
Отевет: неравенство имеет решение при любом значении х
2. х^2+6x+12<0
Подставляем:
х=1
1)1*1+6*1+12<0 - 1+6+12=19 - 19>0
2)-1*(-1)+6*(-1)+12<0 - 1+(-6)+12=7 - 7>0
3)0*0+6*0+12<0 - 0+0+12=12 - 12>0
Проверка:
х=10
1)10*10+6*10+12<0 - 100+60+12=172 - 172>0
2)-10*(-10)+6*(-10)+12<0 - 100+(-60)+12=52 - 52>0
Отевет: неравенство НЕ имеет решение при любом значении х
3. х^2+6x-12<0
х=1
Подставляем:
1)1^2+6*1-12<0 - 1+6-12=(-5) - -5<0
2)-1^2+6*(-1)-12<0 - 1+(-6)-12=(-17) - -17<0
3)0^2+6*0-12<0 - 0*0+0-12=(-12) - -12<0
Проверка: (не требует)
x=10
1)10*10+6*10-12<0 - 100+60-12=148 - 148>0
2)-10*(-10)+6*(-10)-12<0 - 100+(-60)-12=28 - 28>0
Отевет: неравенство имеет решение
4. х^2+6x-12>0
х=1
Подставляем:
1)1^2+6*1-12>0 - 1+6-12=(-5) - -5<0
2)-1^2+6*(-1)-12>0 - 1+(-6)-12=(-17) - -17<0
3)0^2+6*0-12>0 - 0*0+0-12=(-12) - -12<0
Проверка:
x=10
1)10*10+6*10-12<0 - 100+60-12=148 - 148>0
2)-10*(-10)+6*(-10)-12<0 - 100+(-60)-12=28 - 28>0
Отевет: неравенство имеет решение
Задача легкая и ее можно запросто решить в уме. Глевное знать как (и делать провеку)
-3 7/15-4/10=к общему знаменателю 30=-3 14/30-12/30= -3 16/30=-3 8/15
-3 8/15- 6 1/3=-3 8/15 - 6 5/15= -9 13/15
2) -2 5/8 - 9,25- 3/4=
-2 5/8- 9,25= -2 5/8 - 9 25/100=к общему знаменателю 400= - 2 250/400 - 9 100/400=-11 350/400=(сократим на 50)= -11 7/8
-11 7/8 - 3/4= -11 7/8 - 6/8= -11 13/8=(выделим в дроби целую часть)=-12 5/8
3 задание
а)(-15)+(-*)= -23-найти неизвестное слагаемое
(-*)=-23-(-15)-перед скобками минус,в скобках меняем на плюс
(-*)=-23+15
(-*)=-8
проверим
-15+(-8)=-23
-23=-23
б)-3,25+х= -4 -0,75
х=-4 -( -3,25)
х=-4 +3,25
х= -0,75
в) -8,4+(-*)= -10 -1,6
-8,4+х= --10
х=--10-(-8,4)
х= -10+8,4
х= -1,6
г)(-*)+(-99,9)= -100 -,1
х+(-99,9)= -100
х-99,9= -100
х= -100+99,9
х= -0,1
д)-1 5/18+(-*)= -2
-1 5/8 + х= -2
х= -2+ 1 5/8
х= -1 8/8 + 1 5/8
х= - 3/8
е)-2 3/4 + (-*)= -3
-2 3/4+х= -3
х= -3+2 3/4
х= -2 4/4 + 2 3/4
х=-1/4
Нужно найти тот пример, в котором если подставить любое удобное число и 0 в место х (я же использую 1, -1 и 0, но не всегда - поймете почему в объяснение) , то будет НЕ правильно и работает это методом вычисления и ИНОГДА (если трудно или подобное) метод исключения
1. х^2+6x+12>0
Подставляем:
х=1
1)1*1+6*1+12>0 - 1+6+12=19 - 19>0
2)-1*(-1)+6*(-1)+12>0 - 1+(-6)+12=7 7>0
3)0*0+6*0+12>0 - 0+0+12=12 12>0
Проверка: (не требует)
x=10
1)10*10+6*10+12<0 - 100+60+12=172 - 172>0
2)-10*(-10)+6*(-10)+12<0 - 100+(-60)+12=52 - 52>0
Отевет: неравенство имеет решение при любом значении х
2. х^2+6x+12<0
Подставляем:
х=1
1)1*1+6*1+12<0 - 1+6+12=19 - 19>0
2)-1*(-1)+6*(-1)+12<0 - 1+(-6)+12=7 - 7>0
3)0*0+6*0+12<0 - 0+0+12=12 - 12>0
Проверка:
х=10
1)10*10+6*10+12<0 - 100+60+12=172 - 172>0
2)-10*(-10)+6*(-10)+12<0 - 100+(-60)+12=52 - 52>0
Отевет: неравенство НЕ имеет решение при любом значении х
3. х^2+6x-12<0
х=1
Подставляем:
1)1^2+6*1-12<0 - 1+6-12=(-5) - -5<0
2)-1^2+6*(-1)-12<0 - 1+(-6)-12=(-17) - -17<0
3)0^2+6*0-12<0 - 0*0+0-12=(-12) - -12<0
Проверка: (не требует)
x=10
1)10*10+6*10-12<0 - 100+60-12=148 - 148>0
2)-10*(-10)+6*(-10)-12<0 - 100+(-60)-12=28 - 28>0
Отевет: неравенство имеет решение
4. х^2+6x-12>0
х=1
Подставляем:
1)1^2+6*1-12>0 - 1+6-12=(-5) - -5<0
2)-1^2+6*(-1)-12>0 - 1+(-6)-12=(-17) - -17<0
3)0^2+6*0-12>0 - 0*0+0-12=(-12) - -12<0
Проверка:
x=10
1)10*10+6*10-12<0 - 100+60-12=148 - 148>0
2)-10*(-10)+6*(-10)-12<0 - 100+(-60)-12=28 - 28>0
Отевет: неравенство имеет решение
Задача легкая и ее можно запросто решить в уме. Глевное знать как (и делать провеку)
по звезд ибо делал 2 с лишним часа