Прямоугольник составлен из большого квадрата 3 средних квадратов и 3 маленьких квадратиков сторона закрашенного квадрата равна 8 чему равна сторона маленького квадратика
Пошаговое объяснение:ответы на тест по тригонометрии.
Задание 1. Уравнение вида a sin2x + b sinx cosx + c cos2x = 0 называют однородным тригонометрическим уравнением второй степени.
Алгоритм решения однородного тригонометрического уравнения первой степени:
1.Посмотреть, есть ли в уравнении член asin2 x.
2.Если член asin2 x в уравнении содержится (т.е. а 0), то уравнение решается делением обеих частей уравнения на cos2x и последующим введение новой переменной.
3.Если член asin2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx.
Задание 2. 1 уравнение из перечисленных не являются однородными, Это уравнение: 5 Sinx +3 Cosx =1 ответ:1
Задание 3. ответ:5. 5 уравнений из перечисленных являются однородными, Это уравнения: 1) 5sinx+3Cosx=0, 2) 5Sin2x+3SinxCosx+3Cos2x=0, 3) 5Sin2x+3SinxCosx+3Cos2x=3, 4) 5Sin2x+3SinxCosx = 3Cos2x, 5) Sinx=Cosx
Если условие записано ВЕРНО, то будем решать (х²-7х+13)²-(х-3)(х-4)=1 Перемножаем (х-3)(х-4)=х²-3х-4х+12=х²-7х+12 Сравниваем с (х²-7х+13)² - видим, что отличаются на 1.
Обозначим х²-7х+12=а Получим (а+1)²-а=1 (а+1)²=а+1 Можно разделить на (а+1) - но при этом УСЛОВИЕ, что а+1 НЕ РАВНО нулю (ведь деление на нуль невозможно), т.е. а не равно -1
Проверим, ЧЕМ не может быть х (когда а=-1) х²-7х+12=-1 , если х²-7х+13=0 Корней НЕТ.
Итак, делим (а+1)²/(а+1)=(а+1)/(а+1) а+1=1 а=0
Возвращаемся к исходному а=х²-7х+12 Значит, х²-7х+12=0
ответ: ответы в файле
Пошаговое объяснение:ответы на тест по тригонометрии.
Задание 1. Уравнение вида a sin2x + b sinx cosx + c cos2x = 0 называют однородным тригонометрическим уравнением второй степени.
Алгоритм решения однородного тригонометрического уравнения первой степени:
1.Посмотреть, есть ли в уравнении член asin2 x.
2.Если член asin2 x в уравнении содержится (т.е. а 0), то уравнение решается делением обеих частей уравнения на cos2x и последующим введение новой переменной.
3.Если член asin2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx.
Задание 2. 1 уравнение из перечисленных не являются однородными, Это уравнение: 5 Sinx +3 Cosx =1 ответ:1
Задание 3. ответ:5. 5 уравнений из перечисленных являются однородными, Это уравнения: 1) 5sinx+3Cosx=0, 2) 5Sin2x+3SinxCosx+3Cos2x=0, 3) 5Sin2x+3SinxCosx+3Cos2x=3, 4) 5Sin2x+3SinxCosx = 3Cos2x, 5) Sinx=Cosx
Задание 4. ответ: 1)сCos2x , 2)aSin2x , 4)bSinxCosx
Задание 5. ответ: варианты 1 и 3.
Задание 6. ответ: 4) Задание 7. ответ: 2) и 5)
Задание 8. ответ: 2) и 3)
Задание 9. ответ: вариант 4)
Задание 10. ответ: 2(два уравнения однородные 1 степени)
Перемножаем (х-3)(х-4)=х²-3х-4х+12=х²-7х+12
Сравниваем с (х²-7х+13)² - видим, что отличаются на 1.
Обозначим х²-7х+12=а
Получим (а+1)²-а=1
(а+1)²=а+1
Можно разделить на (а+1) - но при этом УСЛОВИЕ, что а+1 НЕ РАВНО нулю (ведь деление на нуль невозможно), т.е. а не равно -1
Проверим, ЧЕМ не может быть х (когда а=-1)
х²-7х+12=-1 , если х²-7х+13=0
Корней НЕТ.
Итак, делим (а+1)²/(а+1)=(а+1)/(а+1)
а+1=1
а=0
Возвращаемся к исходному а=х²-7х+12
Значит, х²-7х+12=0
Решаем и получаем, что при х=3 и при х=4