РАБОТА В ПАРЕ Ты уже умеешь находить значения в ранения с нескол кими переменными при заданных значения бука. Прес- разуй выражения и найди значения при арані знае ниях букв. (274 + 124 ја + 237с 562c +634c + 76с a=1 569 + d (645 +557 + 16Тc - 6а b=2
Точки, в которых функция точно неопределена: x1 = 2 Сначала находим производную: Применим правило производной частного:ddx(f(x)g(x))=1g2(x)(−f(x)ddxg(x)+g(x)ddxf(x))f(x)=x² и g(x)=x−2.Чтобы найти ddxf(x):В силу правила, применим: x² получим 2xЧтобы найти ddxg(x):дифференцируем x−2 почленно:Производная постоянной −2 равна нулю.В силу правила, применим: x получим 1В результате: 1Теперь применим правило производной деления:(1/(x−2)²)*(−x²+2x(x−2))Теперь упростим: ответ f'= x(x−4)/(x−2)².Экстремумы находим при f' = 0.Производная больше 0 - функция возрастает х∈(-00;0] U[4;00) убывает х∈[0;2)U[2;00)
Сначала находим производную:
Применим правило производной частного:ddx(f(x)g(x))=1g2(x)(−f(x)ddxg(x)+g(x)ddxf(x))f(x)=x² и g(x)=x−2.Чтобы найти ddxf(x):В силу правила, применим: x² получим 2xЧтобы найти ddxg(x):дифференцируем x−2 почленно:Производная постоянной −2 равна нулю.В силу правила, применим: x получим 1В результате: 1Теперь применим правило производной деления:(1/(x−2)²)*(−x²+2x(x−2))Теперь упростим: ответ f'= x(x−4)/(x−2)².Экстремумы находим при f' = 0.Производная больше 0 - функция возрастает х∈(-00;0] U[4;00) убывает х∈[0;2)U[2;00)
Функция f(x) = 2x³ - 9x² - 60x + 127
Производная f'(x) = 6x² - 18x - 60
Находим точки экстремума 6x² - 18x - 60 = 0
х² - 3х - 10 = 0
D = 9 + 40 = 49
х1 = 0,5(3 - 7) = -2;
х2 = 0,5(3 + 7) = 5
f'(x) > 0 при x∈ (-∞; -2)U(5; +∞) - в этих интервалах функция возрастает
f'(x) < 0 при х∈(-2; 5) - в этом интервале функция убывает
В точке х = -2 производная меняет знак с + на -, поэтому х = -2 - точка максимума.
В точке х = 5 производная меняет знак с - на +, поэтому х = 5 - точка минимума
ответ: Точки экстремума: х = -2 -точка максимума; х = 5 - точка минимума.
Интервалы монотонности: f(x)↑ при х∈ (-∞; -2)U(5; +∞);
f(x)↓ при х∈(-2; 5)