1) Частота дискретизации 44.1 кГц означает, что в секунду делается 44 100 отсчетов. Разрешение 16 бит (т.е. 16/8=2 байта) требует для хранения каждого отсчета 2 байта, а для хранения информации за 1 секунду - 2 х 44 100 = 88 200 байт. Две минуты - это 2 х 60 = 120 секунд и тогда общий объём составит 88 200 х 120 = 10 584 000 байт или 10 584 000 / 1024 = 10 335.94 Кбайт, или 10 335.94 / 1024 = 10.1 Мбайт И все это - для одного канала записи (монофонической). Если запись стереофоническая - то каналов два и потребуется 2 х 10.1 = 20.2 Мбайта и т.д. 2) В этой задаче много неизвестных, а ход её решения обратный по отношению к предыдущей задаче. 2.6 Мбайта = 2.6 х 1024² = 2 726 297.6 байт. В одной минуте 60с, поэтому объем информации за одну секунду не может превышать 2 726 297.6 / 60 = 45 438.3 байт. А теперь это число нужно разделить на произведение трех значений: количества каналов записи, частоты дискретизации в герцах и разрешения (количества байт, отводимых для хранения одного отсчета). Все эти значения нам неизвестны, поэтому у задачи нет однозначного решения. Например, если канал один, а разрешение равно 1 байту, то частота дискретизации не может превышать 45 438 байт, что примерно соответствует общепринятой частоте 44 100 Гц (44.1 кГц).
При таком раскладе цифр цена может быть: 1, 4, 5, 10, 14, 15
Нам нужно число, из которого можно вычесть некий Х два раза (монеты), а итог поделится на некоторое другое число Y с результатом 3 (купюры), причем Y > X. на число 3 делятся числа 3, 6, 9, 12, 15. , номинал купюр соответственно 1, 2, 3, 4, 5.
Ищем, какое число можно вычесть, чтобы результат делился на 2:
4 - 3 = 1 нет 5 - 3 = 2 да 10 - 6 = 4 да 14 - 12 = 2 да 15 -15 = 0 нет
5 - купюры и монеты будут одного достоинства, по 1. нет 10 - купюры и монеты будут одного достоинства, по 2. нет 14 - купюры будут по 4, соответственно монеты по 1. да
88 200 х 120 = 10 584 000 байт или 10 584 000 / 1024 = 10 335.94 Кбайт, или 10 335.94 / 1024 = 10.1 Мбайт
И все это - для одного канала записи (монофонической). Если запись стереофоническая - то каналов два и потребуется 2 х 10.1 = 20.2 Мбайта и т.д.
2) В этой задаче много неизвестных, а ход её решения обратный по отношению к предыдущей задаче. 2.6 Мбайта = 2.6 х 1024² = 2 726 297.6 байт. В одной минуте 60с, поэтому объем информации за одну секунду не может превышать 2 726 297.6 / 60 = 45 438.3 байт. А теперь это число нужно разделить на произведение трех значений: количества каналов записи, частоты дискретизации в герцах и разрешения (количества байт, отводимых для хранения одного отсчета). Все эти значения нам неизвестны, поэтому у задачи нет однозначного решения. Например, если канал один, а разрешение равно 1 байту, то частота дискретизации не может превышать 45 438 байт, что примерно соответствует общепринятой частоте 44 100 Гц (44.1 кГц).
1, 4, 5, 10, 14, 15
Нам нужно число, из которого можно вычесть некий Х два раза (монеты), а итог поделится на некоторое другое число Y с результатом 3 (купюры), причем Y > X.
на число 3 делятся числа 3, 6, 9, 12, 15. , номинал купюр соответственно 1, 2, 3, 4, 5.
Ищем, какое число можно вычесть, чтобы результат делился на 2:
4 - 3 = 1 нет
5 - 3 = 2 да
10 - 6 = 4 да
14 - 12 = 2 да
15 -15 = 0 нет
5 - купюры и монеты будут одного достоинства, по 1. нет
10 - купюры и монеты будут одного достоинства, по 2. нет
14 - купюры будут по 4, соответственно монеты по 1. да
ответ: 14