1)Решить систему уравнений методом алгебраического сложения:
7х+2у=20
х-3у= -7
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на -7:
7х+2у=20
-7х+21у=49
Складываем уравнения:
7х-7х+2у+21у=20+49
23у=69
у=69/23
у=3;
Теперь подставить значение у в любое из двух уравнений системы и вычислить х:
х-3у= -7
х= -7+3*3
х=2.
Решение системы уравнений (2; 3).
Вычислить х+у=2+3=5.
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2)Решить систему уравнений методом подстановки:
2х+3у=16
х-2у=1
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х=1+2у
2(1+2у)+3у=16
2+4у+3у=16
7у=16-2
7у=14
у=2;
х=1+2у
х=1+2*2
х=5.
Решение системы уравнений (5; 2).
Вычислить х*у=5*2=10.
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
В решении.
Пошаговое объяснение:
1)Решить систему уравнений методом алгебраического сложения:
7х+2у=20
х-3у= -7
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на -7:
7х+2у=20
-7х+21у=49
Складываем уравнения:
7х-7х+2у+21у=20+49
23у=69
у=69/23
у=3;
Теперь подставить значение у в любое из двух уравнений системы и вычислить х:
х-3у= -7
х= -7+3*3
х=2.
Решение системы уравнений (2; 3).
Вычислить х+у=2+3=5.
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2)Решить систему уравнений методом подстановки:
2х+3у=16
х-2у=1
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х=1+2у
2(1+2у)+3у=16
2+4у+3у=16
7у=16-2
7у=14
у=2;
х=1+2у
х=1+2*2
х=5.
Решение системы уравнений (5; 2).
Вычислить х*у=5*2=10.
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
а)
Чтобы найти первое слагаемое (b), надо из суммы (3000) вычесть второе слагаемое (1111).
b=3000-1111=1889.
b)
Чтобы найти второе слагаемое (c), надо из суммы (1362) вычесть первое слагаемое (456).
c=1362-456=906
c)
Чтобы найти первое слагаемое (p), надо из суммы (1451) вычесть второе слагаемое (207).
p=1451-207=1244
г)
Чтобы найти вычитаемое (y), надо из уменьшаемого (1834) вычесть разность (753).
y=1834-753=1081
д)
Чтобы найти уменьшаемое (b), надо к разности (96) прибавить вычитаеомое (45).
b=96+45=141
е)
Чтобы найти вычитаемое (x), надо из уменьшаемого (2045) вычесть разность (15).
x=2045-15=2030
ж)
Чтобы найти уменьшаемое (k), надо к разности (2095) прибавить вычитаеомое (183).
k=2095+183=2278
з)
Чтобы найти второе слагаемое (c), надо из суммы (1834) вычесть первое слагаемое (708).
c=1834-708=1126
и)
Чтобы найти вычитаемое (x), надо из уменьшаемого (2002) вычесть разность (1362).
x=2002-1362=640