Это парабола y=x^2+4x. При у=0 получаем x^2+4*x=0, x(1)=0, x(2)=-4. При этих значениях парабола пересекает ось Х. По этим данным уже можно построить параболу. Ось параболы - прямая, параллельная оси У, проходит через точку (-2;0). А вообще, методика такая: Выделяется полный квадрат, вида у=(х-а)^2+b. Для этого берется формула (x+a)^2 или (x-a)^2, знак зависит от знака члена с первой степенью х, в данном случае +4, значит берем формулу с плюсом, и развертываем ее: (x+a)^2=x^2+2*x*a+a^2. Сопоставляем члены с первой степенью х в развернутой формуле и в исходной функции. Видим, что 2*х*а=4*х, значит а=2. К исходной формуле добавляем a^2, а чтобы значение не изменилось, вычитаем a^2. y=x^2+4x+2^2-2^2 y=(x^2+2*x*2+2^2)-4 y=(x+2)^2-4 Из полученного выражения определяем, что ось параболы проходит через точку (-2;0) (-2 получается из выражения (х+2)^2, берем с противоположным знаком). Свободный член (-4) означает, что минимальное значение у=-4, то есть вершина параболы находится на оси параболы в точке (-2;-4). Легко запомнить 0^2=0, (+-1)^2=1, (+-2)^2=4, (+-3)^2=9, остальные значения обычно не требуются. Строишь по этим значениям параболу с вершиной в начале координат, затем смещаешь ее влево или вправо, вверх или вниз на нужное число единиц. В данной задаче на 2 клетки влево и на 4 клетки вниз.
А вообще, методика такая:
Выделяется полный квадрат, вида у=(х-а)^2+b.
Для этого берется формула (x+a)^2 или (x-a)^2, знак зависит от знака члена с первой степенью х, в данном случае +4, значит берем формулу с плюсом, и развертываем ее:
(x+a)^2=x^2+2*x*a+a^2.
Сопоставляем члены с первой степенью х в развернутой формуле и в исходной функции.
Видим, что 2*х*а=4*х, значит а=2.
К исходной формуле добавляем a^2, а чтобы значение не изменилось, вычитаем a^2.
y=x^2+4x+2^2-2^2
y=(x^2+2*x*2+2^2)-4
y=(x+2)^2-4
Из полученного выражения определяем, что ось параболы проходит через точку (-2;0) (-2 получается из выражения (х+2)^2, берем с противоположным знаком).
Свободный член (-4) означает, что минимальное значение у=-4, то есть вершина параболы находится на оси параболы в точке (-2;-4).
Легко запомнить 0^2=0, (+-1)^2=1, (+-2)^2=4, (+-3)^2=9, остальные значения обычно не требуются.
Строишь по этим значениям параболу с вершиной в начале координат, затем смещаешь ее влево или вправо, вверх или вниз на нужное число единиц. В данной задаче на 2 клетки влево и на 4 клетки вниз.
288*\pi или примерно 904.32 кубических сантиметра
Пошаговое объяснение:
Объемы фигур вычисляются по определенным формулам.
Объём шара вычисляется по формуле 4/3*\pi *R^3.
Нам дан диаметр, радис равен половине диаметра.
12/2=6.
6 см - радиус шара.
Находим объём:
4/3*\pi *R^3
4/3*\pi *6^3=
=4/3* \pi *216=
4*72* \pi=288*\pi
Обычно ответ так и оставляют с записью в ответе числа "\pi"
Но если на практике нужна определённая точность или погрешность
в ответе, то следует провести приближённые вычисления взяв значение числа Пи с нужным округлением. Мы возьмём для примера округление до сотых.
\pi=3,14.
288*\pi примерно 904.32 кубических сантиметра