решить! 1. На оси ох найдите точку, расстояние которой от точки А (3;4) равно 5. (ответ: (6;0) и (0;0)) 2. Точка М является серединой отрезка ОА, соединяющего начало координат О с точкой А (-5;2). найдите координаты точки М. (ответ: (-2,5;1)) 3. Точка М (2;3) делит отрезок АВ в отношении 1:2. найдите координаты точки В, если известно, что точка А имеет координаты (1;2). (ответ: в(4;5)) 4. Вершинами треугольника служат точки А (-2;1), В (2;2), С (4;у). Площадь треугольника равна 15. Определите ординату вершины С. (ответ: 10 или -5).
531.020 - Пятьсот тридцать одна тысяча двадцать.
2.140.530 - Два миллиона сто сорок тысяч пятьсот тридцать.
909 .444. 129. 008 - Девятьсот девять миллиардов четыреста сорок четыре миллиона сто двадцать девять тысяч восемь.
2. 850.003 - Два миллиона восемьсот пятьдесят тысяч три.
73.302.100 - Семьдесят три миллиона триста две тысячи сто.
12.326.751.074 - Двенадцать миллиардов триста двадцать шесть миллионов семьсот пятьдесят одна тысяча семьдесят четыре.
93. 405. 002 - Девяносто три миллиона четыреста пять тысяч два.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8