записанное число делится на 81, следовательно оно делится и на 9. из признака делимости на 9 следует, что число единиц в этом числе так же делится на 9. среди чисел от 1 до 15 есть только одно такое число: 9, следовательно, в записи числа 9 единиц. данное число не делится на 10 и в его записи участвуют только нули и единицы, следовательно оно оканчивается на единицу. предположим, что можно вычеркнуть ноль так, чтобы оставшееся число делилось на 81. до вычеркивания нуля исходное число имело вид 10a+b, а полученное после вычеркивания a+b. преобразуем полученное число a+b=(10a+b)-9a 10a+b делится на 81 по условию. для того, чтобы a+b делилось на 81 нам необходимо, чтобы второе слагаемое делилось на 81, а для этого нужно, чтобы a делилось на 9 но этого не может быть так как число a записывается нулями и единицами, причем единиц не больше восьми, т.к. в исходном числе их было 9, причем одна из них находилась в самом правом разряде, т.е. неминуемо попала в число b. вывод: для числа a не выполнен признак делимости на 9, следовательно, 9a не делится на 81. противоречие.
1.а) 9a² - 16=(3а-4)(3а+4)
б) 4y² - 25=(2у+5)(2у+5)
в) x⁴ - 81=(х²-9)(х²+9)=(х-3)(х+3)(х²+9)
г) x³ - 8=(х-3)(х²+3х+9)
д) y³ + 125=(у+5)(у²-5у+25)
е) y² - 26y + 169 =(у-13)²
2. а) 45b + 6a - 3ab - 90= (45b-3ab)+( 6а- 90)=3b(15-а)-6*(15-а)=
3*(15-а)((15-а)(b-2)
б) - 5xy - 40y - 15x - 120=-5*(xy+8y+3x+24)=-5(у*(х+8)+3*(х+8))=-5*(х+8)(у+3)
в) ac⁴- c⁴+ ac³ - c³ =с³(ас-с+а-1)=с³*(а-1)*с+(а-1))=с³*(а-1)*(с+1)
3. а) 4a⁴ - 25b⁴=(2а²-5b²)(2a²+5b²)=(√2a-√5b)(√2a+√5b)(2a²+5b²)
б) b⁶+ 1=(b²)³+1³=(b²+1)*(b⁴-b²+1)
b) m⁴ - 12m² + 36=(m²-6)²=(m-√6)²*(m+√6)²
записанное число делится на 81, следовательно оно делится и на 9. из признака делимости на 9 следует, что число единиц в этом числе так же делится на 9. среди чисел от 1 до 15 есть только одно такое число: 9, следовательно, в записи числа 9 единиц. данное число не делится на 10 и в его записи участвуют только нули и единицы, следовательно оно оканчивается на единицу. предположим, что можно вычеркнуть ноль так, чтобы оставшееся число делилось на 81. до вычеркивания нуля исходное число имело вид 10a+b, а полученное после вычеркивания a+b. преобразуем полученное число a+b=(10a+b)-9a 10a+b делится на 81 по условию. для того, чтобы a+b делилось на 81 нам необходимо, чтобы второе слагаемое делилось на 81, а для этого нужно, чтобы a делилось на 9 но этого не может быть так как число a записывается нулями и единицами, причем единиц не больше восьми, т.к. в исходном числе их было 9, причем одна из них находилась в самом правом разряде, т.е. неминуемо попала в число b. вывод: для числа a не выполнен признак делимости на 9, следовательно, 9a не делится на 81. противоречие.