ИССЛЕДОВАНИЕ Для наглядности вопроса сразу рассмотри график как функции (красная линия), так и её производной (синяя линия). 1. Область определения. Знаменатель не равен 0. 1-х² ≠0 или х ≠ +/- 1 - точки разрыва. Х∈(-∞,-1]∪[-1,+1]∪[+1,+∞) 2. Производная используется для поиска точек экстремума функции.
То, что знаменатель равен (1-х)⁴ и функция имеет разрывы при х=+/- 1 нас не очень волнует. Нас интересуют корни числителя - их должно быть четыре. Из множителя = х² получаем два корня х1 = х2 = 0. Из множителя (х² - 3) получаем еще два корня. х3 = - √3, х4 = √3. - точки экстремума 2. Функция возрастает где производная положительная. УБЫВАЕТ Х∈(-∞,-√3]∪[√3,+∞). ВОЗРАСТАЕТ Х∈[-√3,-1]∪[-1,+1]∪[1,√3] Ymin(-√3) ~ -2.598 Ymax(√3) ~ 2.598 3. Точка перегиба - где два других корня Х= 0. В этой точке равна 0 и вторая производная.
Решаем уравнением: Поскольку клумба окружена дорожкой со всех сторон, то каждая сторона этой дорожки на 2м больше клумбы (+1 слева стороны, +1 справа) . Пусть х - наименьшая сторона клумбы. Тогда другая сторона - х+5. Площадь клумбы - х (х+5). х+2 - одна сторона дорожки (почему +2 я писала в начале) , вторая - х+5+2=х+7. Площадь дорожки - это площадь "дорожки без дырки"((х+7)(х+2)) минус площадь клумбы, т. е. (х+7)(х+2)-х (х+5). Поскольку площать дорожки равна 26, приравниваем эти значения и решаем олученное уравнение: (х+7)(х+2)-х (х+5)=26 х*х (х в квадрате) +2х+7х+14-х*х-5х=26(раскрываем скобки) 4х+14=26(упрощаем) 4х=26-14 4х=12 х=12/4=3(м) -1 сторона клумбы 3+5=8(м) -2 сторона клумбы ответ: 3м; 8м.
ИССЛЕДОВАНИЕ
Для наглядности вопроса сразу рассмотри график как функции (красная линия), так и её производной (синяя линия).
1. Область определения.
Знаменатель не равен 0.
1-х² ≠0 или х ≠ +/- 1 - точки разрыва.
Х∈(-∞,-1]∪[-1,+1]∪[+1,+∞)
2. Производная используется для поиска точек экстремума функции.
То, что знаменатель равен (1-х)⁴ и функция имеет разрывы при х=+/- 1 нас не очень волнует.
Нас интересуют корни числителя - их должно быть четыре.
Из множителя = х² получаем два корня
х1 = х2 = 0.
Из множителя (х² - 3) получаем еще два корня.
х3 = - √3, х4 = √3. - точки экстремума
2. Функция возрастает где производная положительная.
УБЫВАЕТ Х∈(-∞,-√3]∪[√3,+∞).
ВОЗРАСТАЕТ Х∈[-√3,-1]∪[-1,+1]∪[1,√3]
Ymin(-√3) ~ -2.598
Ymax(√3) ~ 2.598
3. Точка перегиба - где два других корня Х= 0.
В этой точке равна 0 и вторая производная.
Поскольку клумба окружена дорожкой со всех сторон, то каждая сторона этой дорожки на 2м больше клумбы (+1 слева стороны, +1 справа) . Пусть х - наименьшая сторона клумбы. Тогда другая сторона - х+5.
Площадь клумбы - х (х+5). х+2 - одна сторона дорожки (почему +2 я писала в начале) , вторая - х+5+2=х+7. Площадь дорожки - это площадь "дорожки без дырки"((х+7)(х+2)) минус площадь клумбы, т. е.
(х+7)(х+2)-х (х+5). Поскольку площать дорожки равна 26, приравниваем эти значения и решаем олученное уравнение:
(х+7)(х+2)-х (х+5)=26
х*х (х в квадрате) +2х+7х+14-х*х-5х=26(раскрываем скобки)
4х+14=26(упрощаем)
4х=26-14
4х=12
х=12/4=3(м) -1 сторона клумбы
3+5=8(м) -2 сторона клумбы
ответ: 3м; 8м.
Надеюсь