Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
Как доказать, что четырехугольник — параллелограмм? Для этого можно использовать определение либо один из признаков параллелограмма.
1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.
ABCD — параллелограмм, если
AB ∥ CD, AD ∥ BC.
Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.
это могут быть пары треугольников
1) ABC и CDA,
2) BCD и DAB,
3) AOD и COB,
4) AOB и COD.
2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.
3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).
Для этого можно доказать равенство одной из тех же пар треугольников.
4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.
Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.
Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.
Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.
в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН.
известно, что АВ = 10, пусть АН = ВН = х,
тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный.
угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3
АС=2*5 корней из 2/3= 10 корней из 2/3
Как доказать, что четырехугольник — параллелограмм? Для этого можно использовать определение либо один из признаков параллелограмма.
1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.
ABCD — параллелограмм, если
AB ∥ CD, AD ∥ BC.
Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.
это могут быть пары треугольников
1) ABC и CDA,
2) BCD и DAB,
3) AOD и COB,
4) AOB и COD.
2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.
3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).
Для этого можно доказать равенство одной из тех же пар треугольников.
4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.
Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.
Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.
Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.